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ABSTRACT 

Recently, specific tasking/total military mission concepts for subsea 

tasks have been developed that demand substantially more endurance and 

range than can be provided by manned submersibles and Remotely 

Operated Vehicles (ROVs), respectively. Small, autonomous unmanned 

systems can provide the best combination of speed, endurance, range, depth 

capacity, and flexibility needed to make these concepts realizable. 

As the U.S. military has continued to identify more and more tasks that 

can be performed by autonomous systems, the Naval Postgraduate School 

has heightened its research efforts to develop an experimental autonomous 

underwater vehicle (AUV) to address these military requirements. As part 

of this development process, a series of NPS A UV simulation systems have 

been developed that couple knowledge-based mission planning and control 

systems with 3-D visualization (graphics) workstations that communicate 

across an interprocess communications network. Development of these 

simulation systems have produced an extremely useful "laboratory 

environment" for rapid prototyping of A UV planning, navigation, and 

control subsystems software. This thesis updates and extends the formats 

and functionality of the simulation systems to include a Mission Planning 

and Control Workstation as a prototype for use aboard A UV deployment 

vessels, upgrades mission profiles, and incorporates improvements to the 

software interface between the mission planning and control subsystem and 

the 3-D visualization subsystem. 
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I. INTRODUCTION 

A. BACKGROUND AND BRIEF PROBLEM STATEMENT 

Research in the area of autonomous vehicles has been extensively 

applied to ground, undersea, and airborne systems with varying degrees of 

success over the last three decades. This thesis focuses in part, on the 

uneven evolution of Autonomous Underwater Vehicles (AUVs) and the 

concurrent developmental trends of the expert systems with which they are 

controlled. 

Underwater vehicles are either tethered or autonomous, manned or 

unmanned. Tethered systems, whether manned or unmanned, have the 

advantage of unlimited power supplied by a surface support platform, but 

are severely restricted in their range and ability to maneuver due to their 

support cabling [Ref. 1 :p. 33]. Untethered manned systems, such as the 

Alvin, Johnson-Sea Link, and Deep Rover [Ref. 1 :p.33], avoid the 

problems inherent to tether management, but are nontheless restricted to 

relatively shallow depths, slow speeds, and short endurance. Small, 

autonomous unmanned systems, however, can avoid all of the problems 

listed above and provide the combination of speed, endurance, depth 

capacity, and flexibility needed for today's sophisticated military 

applications and marine industrial pursuits. 

Interest in Autonomous Underwater Vehicles on the part of the 

military and industry in general began in the early 1960s and conceptual 

designs began to evolve by the middle of that decade [Ref. 2:p. 60]. This 
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interest quickly peaked, however, and dwindled back to a low level for 

many years to come. First, manned submersibles captured the imagination 

of the military and deep-sea related industry from about 1965 to 1975, but 

was followed immediately (and somewhat overlapped) by Remotely 

Operated Vehicles (ROVs) from roughly the 1970's to the recent past. 

During this era, almost all the required subsea tasks could be 

accomplished by manned submersibles (with their limited endurance) or by 

ROVs (with their limited range) [Ref. 2:p. 61]. It was not until specific 

tasking/total mission concepts were developed demanding substantially 

more endurance and range that AUVs came to the forefront of general 

interest again. Simultaneously, the escalating cost of manned systems 

coupled with the rapid technological advances of traditional military 

adversaries, created an atmosphere to seriously consider AUVs for multi

purpose, multi-sensor military applications. 

A fair number of autonomous systems that are operational today are 

controlled in general by some form of artificial intelligence (AI) program, 

and in particular, by an Expert System, which is a subfield of AI that has 

found wide practicality for use in industrial and naval engineering 

applications. The developmental trends of AI have been almost as cyclic as 

that of the autonomous underwater vehicle. For several decades, 

researchers have dreamed of " ... autonomous 'thinking' machines that are 

free of human control" [Ref. 3:p. 32]. And now some believe we are not 

far from realizing that dream. Daniels [Ref. 4:p. 23] defines AI as follows: 

"AI is defined as the application of knowledge, thought and learning to 

computer systems to aid humans." No matter what the real definition is, 
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the important aspect of AI is that this is a relatively new field of computer 

implementation which manipulates knowledge and symbols in ways that are 

not possible with conventional data processing. 

AI got its rather auspicious start in 1956 when the phrase was coined 

by John McCarthy, the inventor of the LISP programming language [Refs. 

5, 6, 7]. Since then, AI has had at least two periods of heightened 

expectations and crushed hopes. During the late 1950s and early 1960s 

researchers and scientists focused on autonomous systems and the 1960s 

saw a number of implementations tested. For the most part these attempts 

ended in failure [Ref. 5]. The situation has changed dramatically over the 

past seven years. Generic knowl~dge systems which embody natural 

language interfaces, tools for developing the expert knowledge base 

through rules and examples, and inference engines are now commercially 

available for desk top microcomputers [Ref. 3:p. 34 ]. 

As the U. S. military has continued to identify more and more tasks 

that can be performed by autonomous systems, the Naval Postgraduate 

School (NPS) has heightened its research in 3-D visualization techniques, 

knowledge-based expert systems, and development of an experimental 

AUV to address these n1ilitary requirements. Previous 3-D visualization 

and expert systems research at NPS has shown the outstanding utility of 

coupling knowledge-based mission planning and control systems with 3-D 

graphics workstations to produce an extremely useful "laboratory 

environment" for testing A UV planning, navigation, and control 

subsystems [Refs. 8, 9]. Use of these visual simulators have significantly 

reduced the time and expense of implementing various A UV subsystems 
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while also permitting efforts to proceed along several independent but 

simultaneous approaches. 

This thesis improves on previous research at NPS by further expanding 

and upgrading the missions and mission planning software and improving 

the software interface between the mission planning and control subsystem 

and the 3-D visualization subsystem. In addition, an interactive AUV 

Mission Planning and Control Workstation was developed as an 

experimental prototype for possible use onboard AUV deployment 

platforms. This workstation has been fully integrated with the AUV 

mission planner and graphics workstation to more fully demonstrate the 

total A UV environment. 

B. THESIS ORGANIZATION 

Chapter II reviews previous work on A UV systems and examines the 

development of expert systems and their significant role in the evolution of 

AUVs. Expected developments in the area of expert systems and their 

possible impact upon future AUV research are also discussed. 

Chapter III presents a detailed problem statement for this research and 

describes the evolutionary development of the NPS AUV, to include a 

comparison of the NPS Model 1 and NPS Model 2 AUVs. The mission 

upgrades and mission planner/dynamic model interface upgrades are 

discussed and contrasted to earlier versions. Lastly, the A UV Mission 

Planning and Control Workstation is described and the utility of this 

prototype for use in the fleet is discussed. 

A detailed description of the simulator's operation is described and 

discussed in Chapter IV. This includes a review of the mission planning 
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and control software architecture and how they relate to the two most 

recently developed 3-D visual simulators, AUV -SIM2 and AUV -SIM3, the 

operation of the A UV Mission Planning and Control Workstation, and a 

user's manual. 

The utility of the AUV simulator research is examined in Chapter V. 

This chapter explains how rapid prototyping using the expert system 

control software and 3-D visualization system has saved time and cost in 

the development of the NPS A UV. These results are summarized in 

Chapter VI and are used as a basis for proposed research extensions. This 

chapter also contrasts the development of the NPS AUV and systems 

developed by other research organizations. 
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II. SURVEY OF PREVIOUS WORK 

A. INTRODUCTION 

The 1980s have witnessed a virtual boom in Autonomous Underwater 

Vehicle (A UV) technological advances as compared to the uneven interest 

and development of the previous three decades. Recent advances in micro

electronic technology, high speed digital computers, component 

miniaturization, artificially intelligent signal processing, control and 

sensor systems, and high-energy, high-density power supplies, coupled with 

rapidly broadening industrial and military demands for this technology, has 

made this revival both necessary and possible. MacPherson and Nordman 

[Refs. 8, 9] reported on recent developments in AUV technology used for 

military and industrial applications. Research and development of even 

more innovative and versatile systems continue. 

As far back as the early 1970s, the U. S. Navy recognized the rapidly 

growing requirement for deep-ocean unmanned vehicles to perform 

survey, recovery, and other classified military missions[Ref. 2:p. 62]. 

Traditional adversaries were becoming more technologically advanced at 

an alarming rate which created a need for more innovative counters to this 

very real threat. This type of vehicle outfitted with appropriate sensors and 

highly efficient computerized decision and control technology offered 

rapid response to emergency situations while, at the same time, providing 

an economical and safe means of fulfilling a broad spectrum of tasks. 
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Now, nearly twenty years later, the requirements have not changed but 

have grown increasingly more complex [Ref. 2:p. 65]. 

To meet these complex demands for AUV technology, expert system 

technology, as a branch of Artificial Intelligence (AI), has had to follow 

suit. Most autonomous systems use some form of knowledge-based expert 

system to manage their computer software hierarchy/control structure. 

After experiencing relatively auspicious beginnings, much like that of the 

AUV, the ever-increasing computer capacity, significant breakthroughs in 

know ledge representation, and the high efficiency of symbolic 

programming techniques, has enabled expert systems to become more and 

more popular in a wide variety of application fields where highly reliable 

and rapid decision-making is involved, such as medical diagnosis, 

geographical pattern search, and even tn monitoring complex process 

control systems [Ref. lO:p. 165]. 

This chapter examines current AUV and expert systems advances and 

then shows how these systems relate to today's myriad and complex 

industrial and military demands. 

B. AUTONOMOUS UNDERWATER VEHICLE TECHNOLOGY 

Over the last 20 years, the trend in undersea vehicles has progressed 

from manned submersibles to Remotely Operated Vehicles (ROV s) to 

Autonomous Underwater Vehicles (AUVs). This progression has been 

directed toward minimizing the need of man's physical presence and 

intervention underwater by developing a self-contained, preprogrammed, 

decision-making AUV, that is independent of all external control, with the 
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exception of launch and recovery operations, and in some cases, midcourse 

data recovery or redirection [Ref. 11]. This research and development 

effort extends to Multiple A~tonomous Underwater Vehicles (MAUVs) and 

A UV -ROV combinations (i.e., the ALVIN submersible and JASON JR 

(ROV) used during the TIT ANTIC exploration). 

The greatest advantage of an AUV is that it can swim free from 

restrictions of umbilical cabling and is capable of operating at substantial 

depths with relatively long endurance [Ref. 12:p. 263]. AUVs with subsea 

robotics capability provide a great challenge and opportunity for 

automating many of the present underwater vehicle applications currently 

performed by manned or remotely operated submersibles. Subsea robotics 

capabilities needed by A UV s to accomplish these tasks include advances in 

areas such as: high resolution, 3-D imaging systems; computer aided vision 

systems; satellite-subsurface acoustic/laser telemetry systems; highly 

dextrous, autonomous two or three arm manipulator systems; and high

energy, high-density power sources [Ref 11]. A myriad of research and 

development efforts in these areas is in progress both in the United States 

and abroad and this section surveys some of those activities; in particular, 

those activities sponsored by the Department of Defense. 

1. R & D Background 

A recent survey revealed that 36 different U.S. organizations are 

conducting research/development projects involving underwater vehicles, 

26 of which are directly related to AUVs. In addition, 10 different foreign 

countries are involved in similar R&D efforts. In the U.S., the major 

source of funding for A UV R&D is the Department of Defense, which 
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accounts for approximately 90o/o or more of the total funds. Within the 

DOD, the Navy and the Defense Advance Research Agency (DARPA) are 

the primary backers of the subject research. The survey also reports that 

non-DOD efforts account for less than about $500,000 per year [Ref. 11]. 

2. DOD AUV Research Programs 

a. Draper Laboratories 

Working under the auspices of DARPA, Draper Laboratories 

is developing the Unmanned Underwater Vehicle (UUV). The UUV shape 

will be that of a submarine, the physical characteristics of which is 

consistent with the low drag needed for minimum propulsion power. 

Other characteristics of the UUV are ,listed in Figure 2.1 [Ref. 11]. 

DRAPER LAB ORA TORIES' UUV CHARACTERISTICS 

*Shape: 
*Weight: 
*Speed: 
*Acceleration: 
*Depth Control: 
*Navigational Accuracy: 
*Power: 

submarine 
approximately 6,800 kg 
10 knots (maximum) 
0 to 10 knots in 44 sees 
+/- 1m at speeds greater than 3 knots 
accurate to within 0.2 knots 
silver-zinc battery (-2,300 kg) 

Figure 2.1 Draper Laboratories' UUV Characteristics 
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b. Martin Marietta 

Also working under the DARPA umbrella, Martin Marietta is 

involved in classified research to assess the capabilities and limitations of 

AUVs. Some of the tasks being considered include planting submarine 

sensors on the sea-floor, surveying and mapping minefields, towing 

hydrophone arrays and serving as long-range weapons platforms [Ref. 11]. 

c. Office of Naval Research (ONR) 

ONR is funding, through the Naval Research Laboratory, 

development of several AUV capabilities, including long-range navigation 

and fuel-cell power sources. The long-range navigation effort is to 

develop a technique that will provide accurate navigational capabilities 

beyond 100 nautical miles from a starting point. The goal of the fuel-cell 

program is to develop a power source for a small unmanned observation 

vehicle (UOV) that will use proton exchange technology to develop a fuel 

cell that will not exceed the space occupied by silver-zinc batteries 

currently used on AUVs [Ref. 11]. 

d. Naval Ocean Systems Center (NOSC) 

NOSC San Diego, CA has been a pioneer in the field of ROV 

technology since the 1960s and began AUV activity in the 1970s with 

development of the Experimental Autonomous Vehicle-West (EAVE

West), followed by the Advanced Unmanned Search System (AUSS) in the 

1980s. The AUSS is a deep diving submersible designed for depths in 

excess of 6,000 meters. 

Currently, the next generation AUSS is being built and is 

scheduled to go back to sea in 1990, and the EAVE-West is being 
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configured for evaluating new technologies for energy sources, propulsion, 

data storage, machine vision, and a new processor that uses multi

computing techniques (transputers) [Ref. 13]. Additionally, another AUV 

·recently developed by NOSC, is the Free Swimming Mine Neutralization 

Vehicle (FSMNV). This vehicle and the EAVE-West are being outfitted 

with the new processor and will be used as test beds to evaluate its 

performance. The new control system consists of a 16-node array of 

transputers hosted by an IBM-AT compatible computer and installed in an 

undersea electronics bottle. This test-bed processor is expected to provide 

valuable insights concerning undersea application of embeddable multi

computing [Ref. 14 and 15]. 

e. Office of Naval Technology (ONT) 

In 1987, ONT funded Texas A&M University via the Naval 

System Warfare Center (NSWC) for AUV research and development. The 

current work is directed at developing redundant fault tolerant control 

systems for long duration missions for AUVs [Ref. 11]. 

f. National Oceanic & Atmospheric Administration 

(NOAA) 

The Sea Grant Office of NOAA has funded MIT to develop a 

lightweight, low-cost autonomous vehicle called SEA SQUIRT. The 

vehicle is intended to be a platform for testing AI algorithms. A layered 

control approach to AI is used to give the vehicle the ability to respond to 

unanticipated circumstances and environments. The vehicle will be capable 

of obstacle avoidance and sensor mapping of objects of interest [Ref. 11]. 
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g. National Science Foundation (NSF) 

NSF has sponsored AUV development projects through four 

different institutions: University of New Hampshire, Florida Atlantic 

University, Carnegie-Mellon University, and Woods Hole Oceanographic 

Institution. Research conducted at the University of New Hampshire 

pertains to the design of real-time, expert systems for autonomous vehicles. 

This project will also assess some of the problems in utilizing lnowledge

based systems in real-time operations [Ref. 11]. 

A joint research project by Florida Atlantic University and 

Carnegie-Mellon University is concerned with the development of an 

underwater, 3-D vision system for intelligent AUVs. Algorithms will be 

developed to process signals from ·a multiple element sonar array to 

generate a grid representation of the ocean bottom terrain, and the 

development of map building algorithms to generate a coherent map of the 

terrain. The goal of this research is to develop the capability to produce a 

high level, 3-D world model image required to support underwater 

surveying and sensor-based navigation [Ref. 11]. 

Woods Hole Oceanographic Institution's project involves the 

design and construction of an unmanned, untethered vehicle for servicing 

long-term deep ocean benthic experiments. This vehicle, called the 

Autonomous Benthic Explorer, can be launched from any oceanographic 

research ship and will remain on site for several months, during which 

time, it will periodically move about in its acoustic navigation net, taking 

photos and making a variety of scientific measurements. At the end of its 

mission, it can be recovered, on command, by an available ship. [Ref. 11] 

12 



3. Industrial Activities 

A number of industrial activities are also involved in AUV R&D 

efforts, several of which are in direct support of DOD initiatives. These 

industrial activities include: Boeing Aerospace, Eltech Research 

Corporation, Martin Marietta (discussed in previous section), Westinghouse 

Electric Corporation R&D Division, Honeywell, INC. Systems & Research 

Center, and Hughes Aircraft. 

Boeing Aerospace is involved in development of a long endurance 

power system that will be capable of providing at least 1,000 kw-hours of 

energy over a 10 day period [Ref. 11]. Eltech has developed an aluminum 

air fuel cell--an electrochemical device that continuously converts the 

chemical energy of aluminum and oxygen into electrical energy. The 

energy yield of this configuration is 200 to 300 kw-hours per pound, as 

compared to the silver-zinc batteries currently in use that yields about 100 

kw-hours per pound [Ref. 11]. Westinghouse has developed a silver-iron 

battery for use in AUVs where high-energy, high-density power systems 

are required. Additionally, their Oceanic Division has been examining 

various mechnisms for extending laminar flow on underwater vehicles. 

[Ref. 11] 

Martin Marietta, in addition to development of their UUV, is 

conducting research on a nonlinear control technique known as sliding 

mode control (SMC), and also, Intelligent Waypoint Transiting in complex 

AUV environs. The UUV is used as an in-water test bed for the research, 

and the SMC is designed to provide a theoretical framework for the design 

of controllers that are robust and are able to adapt to varying payloads 
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[Ref. 11]. Intelligent Waypoint Transiting is an approach for planning and 

executing waypoint transiting in a complex and dynamic ocean scene that 

requires the high-level contr~ller to "learn" its environment for future use, 

should it be required to retraverse the same area. [Ref. 11] 

Honeywell's project pertains to AUVs with complex capabilities 

and intelligent software for multi-mission capabilities. This project intends 

to greatly simplify real-time, on-scene mission programming of the AUVs 

on-board computer by operational personnel. A three-level approach will 

be developed consisting of: (1) onshore development of operational tactics: 

(2) predeployment programming by operational specifications, and (3) 

real-time, dynamic determination of the current situation and response 

within the desired operational constraints. [Ref. 11] 

Hughes Aircraft Company, Ground Systems Group sponsors a 

program that envolves a multi-year effort encompassing all aspects of UUV 

technology. The major emphasis, however, is to develop a real-time 

system with intelligent planning. [Ref. 11] 

C. EXPERT SYSTEMS DEVELOPMENT 

1. Evolution and Characteristics 

Over the last several decades, society has had an infatuation with 

trying to breathe life or intelligence into machines. "We no longer want 

computers to just add, subtract, multiply, or divide, but to act human, to 

think" [Ref. 16:p. 1]. One can readily imagine the endless possibilities of 

intelligent machines: computer systems that recommend profitable financial 

and marketing strategies; eagerly perform dangerous and monotonous 
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manufacturing or exploration tasks; create new designs in the automobile 

or semiconductor industries; and quickly monitor and diagnose a patient's 

health. To satisfy this infatuation, an entirely new research effort 

dedicated to the development of artificial intelligence (AI) has evolved and 

has grown in significance to become a virtual growth industry in today's 

world. This new research effort is the development and widespread use of 

"knowledge-based expert systems." Expert systems provide the 

"intelligence" for the sophisticated mechanized "help-mates" of today's 

society. 

What do people mean when they say "artificial intelligence"? What 

is an expert system"? Artificial intelligence research is often defined as the 

search for general computational models of human intelligence [Ref. 17 :p. 

xix]. Expert systems are computer systems, comprising both hardware and 

software that mimic an expert's thought processes to solve complex 

problems in a given field [Ref. 16:p. 3]. An expert system finds reasonable 

solutions to problems for which there may be no hard and fast "right" 

answer. The "expert" computer system uses extensive experience-based 

knowledge of a subject to guess intelligently in the same way as a human 

expert. 

a. Characteristics and Components 

By definition, expert systems are used to solve problems or 

make decisions. Expert systems operate on a processing level higher than 

that of conventional programs. They function like a thought process--they 
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make inferences1 and guesses and ask questions for additional information. 

Suitable applications for expert systems fall into the categories listed in 

Figure 2.2 [Ref. 16:pp. 8-9]. 

CHARACTERISTICS OF EXPERT SYSTEMS 

*Interpreting and Identifying: Explaining summarized results from 
input information. 
*Predicting: Inferring likely consequences of given or hypothetical 
situations. 
*Diagnosing: Identifying causes, given symptoms. 
*Designing: Configuring objects into systems, given constraints. 
*Planning: Devising a method for making or doing something in order 
to achieve an end. 
*Monitoring: Comparing observations with established standards. 
*Debugging and Testing: Prescribing remedies for malfunctions. 
*Instructing and Training: Educating and transferring information. 
*Controlling: Regulating or guiding the operation of a machine, 
apparatus, or system. 

Figure 2.2 Characteristics of Expert Systems 

The four basic components of an expert system are (1) the 

knowledge base, (2) the inference engine, (3) the interface, and (4) the 

I Inference: An implied relationship of one object to another, allowing 
new facts to be derived from existing facts. 
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development engine. Figure 2.3 outlines the basic characteristics of each 

component [Ref. 16:p. 13]. 

COMPONENTS OF AN EXPERT SYSTEM 

*Knowledge Base: Houses the information used by the expert system in 
pursuit of a solution to a problem. 
*Inference Engine: The workhorse of the expert system. It consists of 
the processes that work the knowledge base, do analyses, form hypothesis, 
and audit the processes according to some strategy that emulates the 
expert's reasoning. 
*Interface: Includes a terminal (TIY screen), graphical representations 
(visuals), multiple character windows, and multiple graphic windows. 
*Development Engine: Editor or knowledge acquisition subsystem that 
allows the knowledge engineer to create, modify, add, and delete 
information from the knowledge base. 

Figure 2.3 Components of an Expert System 

b. Brief History 

In 1965, researchers at Stanford University began work on the 

grandfather of all expert systems, DENDRAL [Ref. 18]. DENDRAL, 

based on an algorithm developed by Nobel Prize-winning chemist Joshua 

Lederberg, was designed to analyze information from a spectroscopic 

analysis on chemical compounds to determine their molecular structures. 

Using an efficient variant of a generate-and-test search technique in its 

problem solving, DENDRAL outperformed some of the best human 
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experts in the field [Ref. 16:p. 5]. Approximately 15 years were spent in 

developing DENDRAL--extracting heuristic2 information from expert 

chemists; formulating the experts' reasoning rules into formal rules, and 

implementing and testing the final system. Programmed in LISP, 

DENDRAL is a good example of a rule-based system, storing much of its 

knowledge in "If-Then" production rule statements. 

In 1970, CADAUCEUS was developed at the University of 

Pittsburgh to aid physicians in the diagnosis of human internal diseases. 

Nineteen years later, this system has over 100,000 programmed 

relationships which represent 85% of all relevant knowledge in this 

particular domain. CADAUCEUS analyzes by initially examining the 

problem using a bottom-up problem-solving strategy and then switching to 

a top-down strategy, thus squeezing in on the diagnosis. [Ref. 16] 

MACSYMA was written in the late 1960s by MITs Laboratory 

of Computer Science as a mathematical problem solving aid. By 1971 it 

was being successfully employed in sophisticated symbolic mathematical 

analysis. MACSYMA surpasses most human experts by performing 

differential and integral calculus symbolically and simplifying symbolic 

expressions. Comprising more than 300,000 lines of LISP program code, 

MACSYMA represents approximately 100 work-years of development 

time. [Ref. 16] 

2 Heuristics , in AI jargon, is a list of rules of thumb applied to a certain 
application or situation. They are the mainstay of the knowledge we try to 
store for use by natural English systems, expert systems, and robots. 
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MYCIN was developed at Stanford University in 1972 [Ref. 

19] . One of the most publicized and famous expert systems, MYCIN assists 

with the diagnosis and treatment of infectious blood diseases. Its 

know ledge base currently has more than 4200 production rules. From 

MYCIN stemmed TIERESIAS in 1976 and EMYCIN in 1978. 

TIERESIAS is a knowledge acquisition tool that assists with entering and 

updating the MYCIN knowledge base by utilizing metaknowledge 

(knowledge about knowledge). EMYCIN contains all of the logical 

structure of MYCIN, with the exception of its knowledge of infectious 

blood diseases, hence the name "Empty MYCIN." Thus was born the 

expert system shell, a program containing logical structures and thinking 

strategies, but without the knowledge base of a specific domain. [Ref. 19] 

Then came PUFF, a diagnostic consultation expert system for 

pulmonary function diseases [Ref. 19]. PUFF is a derivative of EMYCIN 

with a pulmonary function diseases knowledge base added. 

About the same time, the Stanford Research Institute (SRI) 

constructed the PROSPECTOR expert system [Ref. 20]. It is a rule-based 

system that assists with the analysis of information related to geological 

exploration. Its data structure is based on a semantic network. 

In 1980, XCON, developed by Digital Equipment Corporation 

(DEC), became the first expert system to be used successfully on a daily 

basis in a commercial environment [Ref. 18]. XCON performs the difficult 

job of configuring VAX computer systems as requested by DEC's 

customers. As reported by DEC, XCON saves the corporation 
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approximately $200,000 per month in staff costs alone, not to mention 

savings in manufacturing costs. 

The 1980s have seen a myriad of applications of expert systems 

that are too numerous to mention here. These new applications include 

autonomous system control, space systems scheduling and control, 

equipment/system design, traffic control, and 3-D vision systems, just to 

name a few. The next section sites a few examples of how expert systems 

are being used in the research and development of one of these areas-

autonomous underwater vehicles. 

2. Role of Expert Systems in AUV Development 

As described in the previous section on A UV development, the 

success of AUV technology depends on its ability to exercise intelligent 

behavior in a hostile marine environment without intervention from man. 

The usefulness of "intelligent controllers" designed from knowledge-based 

expert systems for real-time operations is readily apparent. As such, many 

developers are concentrating their efforts on this technology. 

Honeywell INCs project to develop intelligent software for AUV 

multi-mission capabilities uses an expert system to produce a user-friendly, 

simplified programming environment for operational personnel [Ref. 11]. 

UUV R&D efforts by Hughes Aircraft is another prime example of expert 

system use in the development of A UV planning and control systems. 

Their development of a real-time system with intelligent planning includes 

a graphic human interface that facilitates operator entry of mission 

planning data and allows quick examination of mission progress. An 

expert system shell is used for this facility. [Ref. 11] 
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Researchers at the Applied Physics Laboratory/Johns Hopkins 

University have developed a multiple knowledge-base approach to AUV 

mission control in naval applications which is based on representation of 

the Navy watch team model in a distributed computer system. This 

"human paradigm" approach was -chosen in order to create a control 

structure that could readily accomodate knowledge from domain experts on 

an actual submarine [Ref. 21 :p. 15]. By decomposing the control problem 

into a set of sub-problems that faithfully correspond to the problem 

domains of the members of a watch team (Captain, Conning Officer, 

Navigator, Engineering Officer, Communications Officer, and Helm), the 

problem of the knowledge acquisit~on bottleneck is partially addressed. 

The experienced watch team members become a ready source of expert 

knowledge. This approach, which has become a model used by other AUV 

developers, was tested on a network of 32-bit (Sun) Workstations. Use of 

expert systems allowed object-oriented design techniques to be highly 

modular and to be distributed on multiple processors with interprocess 

communications to be accomplished within and across machine boundaries. 

Programs which were implemented in LISP, C++, and C were able to 

communicate freely using this scheme. A user operating the simulation test 

facility is able to interface easily with the graphical interface to input maps 

and top level mission descriptions and then watch the dialogue between the 

knowledge bases as the missions are executed. [Ref. 21] 

These are but a few examples of how expert systems have become 

an integral part of AUV development and with the current rapid 
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developmental trends of computer, microelectronic, and processor 

technology, the future seems limitless. 
3. Future Developments 

In the past, most expert systems development efforts were very 

expensive and were funded primarily by government agencies as internal 

R&D projects since widespread commercial use was not viewed as a viable 

alternative [Ref 16:p. 247]. Today, both AI and its offspring, expert 

systems, are unquestionably growth industries with far-ranging applications 

in the industrial, military, and commercial sector. Researchers and 

developers have found that expert systems can be cost effectively 

implemented now and with current technological advances the future is 

exceedingly bright in all sectors. Figure 2.4 lists advances that are in 

development now that will further revolutionize the use of expert systems. 

D. EXPERT SYSTEMS AND 3-D VISUALIZATION OF THE 

NPS AUV DYNAMICS AND CONTROL 

As the U. S. military has continued to identify more and more tasks 

that can be performed by autonomous systems, the Naval Postgraduate 

School (NPS) has heightened its research in 3-D visualization techniques, 

knowledge-based expert systems, and development of an experimental 

AUV to address these military requirements. Previous research by 

McPherson and Nordman [Refs. 8,9] demonstrated the outstanding utility 

of interfacing single-user workstations that couple an expert system that 

coordinates mission planning and control to a computer graphics 

workstation which houses a 3-D dynamic model of the AUV currently 
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under construction at NPS. As in the research being conducted at 

APL/Johns Hopkins University, on a multiple knowledge base approach to 

AUV mission control [Ref 21], object-oriented design techniques are 

employed to allow programs to be highly modular and to be distributed on 

EXPECTED TECHNOLOGY ADVANCEMENTS 

*Increased Speed on Conventional Machines: Better LISP and C 
optimization is increasing the development and run speed of expert 
systems on all machines [Refs. 22, 23, 24]. 
*Supercomputers on a Chip: Very high speed integrated circuit 
(VHSIC) technology makes it possible to have micro-chips that contain 
about 35 million transistors which will make almost instantaneous 
processing of expert systems possible at workstations [Refs. 25, 26] 
*Parallel Processing: New computers are being developed with over 
64,000 processors acting in parallel. By working parts of problems 
simultaneously, machines will be able to find solutions faster[Ref. 27]. 
*Neural Networks: Research is proceeding in the effort to use metal
oxide semiconductor field-effect transistors to emulate the way simple 
biological networks work. Development in this area will revolutionize the 
"thinking machine" concept used by autonomous systems [Refs. 28, 29, 30, 
31]. 

Figure 2.4 Expected Technology Advances 

multiple workstations which communicate across interprocess 

communications links. Use of these special purpose workstations, as 

opposed to general purpose computers, provide the best environment for 

development of complex simulation and control software. As such, a 
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"laboratory environment" has been produced at NPS that allows rapid 

prototyping of AUV planning, navigation, and control subsystems which 

ultimately reduces the overall time and expense of AUV subsystem 

development. 

In short, AI workstations provide an excellent environment for the 

development of large-scale complex programs that model human 

intelligence and behavior. Special purpose processors allow for high-speed 

symbolic processing using LISP or PROLOG programming languages. 

High-speed, high resolution 3-D visualization systems allow the production 

of realistic dynamic models of systems under development. Expert system 

shells allow the development of extremely useful and "user-friendly" man

machine interfaces. Networking facilities, large memory capacity, and 

sophisticated memory management provide the necessary flexibility and 

speed for the development of intelligent, dynamic simulators and 

development laboratories [Ref. 8:p 17]. 

E. SUMMARY 

This chapter presents background information on previous research 

that is relevant to this thesis. A brief synopsis of the historical 

development trends of both Autonomous Underwater Vehicles and Expert 

Systems is addressed and is followed by an overview of recent 

developments in both areas of research. This chapter is concluded with a 

brief discussion of A UV research conducted at NPS in the Computer 

Science area of study, and the outstanding utility of using distributed, 

single-user workstations in this research. 
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III. DETAILED PROBLEM STATEMENT 

A. INTRODUCTION 

This research is part of an inter-departmental project at the Naval 

Postgraduate School that is in the process of designing and building an 

experimental Autonomous Underwater Vehicle. The purpose of this thesis 

is to enhance existing real-time, computer graphics simulations of the 

proposed AUV by upgrading mission profiles, improving the mission 

planner/dynamic model interface, and designing and producing an A UV 

Mission Planning and Control Workstation. Additional research is being 

conducted to determine advanced uses of knowledge-based expert systems 

in the development of AUV mission planning and control algorithms. 

B. NPS AUV CHARACTERISTICS 

The original NPS Autonomous Underwater Vehicle design is patterned 

after the U.S. Navy's Swimmer Delivery Vehicle (SDV) that is used for the 

covert delivery and extraction of Special Warfare teams into and out of 

sensitive areas [Refs. 8,9]. Use of this model provided an initial vehicle 

dynamics database from which to start the NPS design efforts. 

Development, building, and testing of the NPS Model 1 A UV provided 

additional hydrodynamic data from which to refine the design, and 

currently, the NPS Model 2 AUV is under construction. 
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1. NPS Model 1 AUV 

The NPS Model 1 AUV is a small 30 by 7 by 3.5 inch tethered 

model that was used to generate much of the initial hydrodynamic and 

control subsystem data used for the design of the NPS Model 2 AUV, 

which is currently under construction. 

As reported by Boncal [Ref. 33:p. 102], this model was built to aid 

in the design of a model following autopilot that could be used in an 

Autonomous Underwater Vehicle. As an initial database, the SDV hull 

shape and hydrodynamic characteristics were well studied, documented, 

and displayed many of the attributes of a potential AUV. 

The model was built as a dramatically scaled-down version of the 

SDV and a 19 state controller was designed for automatic control of 

maneuvers in the dive plane only. This controller design displayed fairly 

robust control and trajectory following characteristics over a five to one 

speed range and provided an excellent array of hydrodynamic test data for 

use in the more advanced controller designs planned for the NPS Model 2 

AUV [Ref. 33:p. 103]. 

2. NPS Model 2 AUV 

The basic shape of the NPS Model 2 AUV is also similar to the 

SDV. The model under construction will be a 350 lb (approximate), 84 by 

16 by 10 inches, flattened cylinder hull shape with a rounded bow and 

tapered stem. The AUV will maneuver with bow planes, stem planes, twin 

rudders, and twin screws. In addition, the model is being equipped with 

two vertical and two horizontal tunnel thrusters for hovering and 
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maneuverability at low speeds. Figure 3.1 is a simple line drawing of the 

proposed body and control surfaces arrangement. 

TOP VIEW 

rnm [EillJ . ~ 
!GRID!~ ~ 

Figure 3.1 Line Drawing of NPS Model 2 A UV 

Three generations of autopilot designs have been tested for possible 

use in the NPS Model 2 AUV: Proportional-Integral-Derivative (PID) 

Control, Sliding Mode Control (SMC), and Adaptive Variable Structure 

Control (A VSC). Each of these designs are much more robust systems than 

the controller used in the earlier model, with the latter two designs 

offering the most promise. 

The PID controller is a simple, not very robust, non-adaptive 

(model specific) design scheme that uses system gain adjustments to provide 
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the desired response [Ref. 34:p 260]. The SMC design is much more 

robust and is a significant improvement over the PID design. The SMC 

principle, in short, is based on a sliding plane and a switching logic that 

stabilizes, asymptotically, pairs of unstable structures in the control system. 

This principle results is a very fast and accurate system with a relatively 

wide bandwidth. However, this system is also non-adaptive [Ref. 35:p. 

212]. The AVSC uses the same principles as the SMC but is more robust 

and not model specific, to a great extent. This system is based on using 

adaptive gains which guarantee convergence of the state vector to the 

sliding surface [Ref. 35:pp. 213-215]. 

To test these control systems in a more realistic environment, 3-D, 

dynamic, visual simulators of the proposed A UV have been developed. 

C. NPS AUV SIMULATORS 

Design and development of new systems, such as autonomous 

underwater vehicles, can be an expensive and time consuming process 

without a means of rapid prototyping and concurrent testing of algorithms, 

subsystems, and high-level mission planners [Ref. 9]. Researchers at NPS 

seek to solve this problem through the use of 3-D visual simulation. 

Previous sin1ulator research at NPS by MacPherson [Ref. 8] has shown 

that graphics workstations provide a useful way to simulate a realistic 

external environment for conducting AUV operations and, more recently, 

Nordman [Ref. 9] has developed a simulator that generates a "laboratory 

environment" for testing several A UV planning, navigation, and control 

subsystems. This approach permits the prompt development and thorough 
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testing of AI software for the NPS Model 2 AUV, the examination of 

different AUV hydrodynamic models, the testing of maneuvering 

subsystems in conjunction with different sensor configurations, as well as 

the rapid prototyping and development of AUV Mission Planning and 

Control Workstations for possible use on AUV launching platforms. 

At present, three different simulators have been developed in the 

progression to provide more and more useful and versatile rapid 

prototyping and development tools for producing mission planning and 

control subsystems for the NPS Model 2 A UV. 

1. NPS AUV-SIMl 

This 3-D visual simulation system was developed before the 

decision was made as to the vehicle body shape of the NPS A UV, but was 

the first attempt at approximating expected A UV behavior in an open

ocean mission environment. As such, this system permits mission 

execution without a detailed implementation of A UV dynamics. The 

simulator represents a small manned vehicle with a control panel and a 

"through the periscope" display. The NPS AUV-Siml dynamics model can 

be operated manually or in the autopilot control mode and consists of a 

simple point-mass approximation governed by one acceleration equation, 

two rate equations, and one attitude equation. The vehicle's location, 

orientation, and motion characteristics are represented by applying these 

equations at a 10-Hz rate and by setting the autopilot's control surface 

positions according to depth or course error. A UV speed is chosen by the 

autopilot and is limited by battery charge or by the onset of cavitation. 

The vehicle's pitch angle is determined by the AUV's speed and stemplane 
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angle and it's acceleration is fixed at 1 knot/sec2 while depth and azimuth 

rates depend on a combination of speed and control surface angle. [Ref. 8] 

Currently, this simulator is used infrequently, but has been retained 

for use during future, more advanced open-ocean mission development for 

the NPS AUV. However, the simulator's mission control software and 

structure, developed using the KEE knowledge-based expert system [Ref. 

8], provided an excellent framework from which to develop more 

advanced mission planning and control systems. Its control structure is a 

hierarchical system architecture that divides control among three areas: the 

mission level, the planning level, and the execution level. This structure 

has been used to develop the NPS A UV -SIM2 and 3 and will also be the 

blueprint for the actual onboard control system for the NPS Model 2 AUV. 

This hierarchical structure will be discussed in more detail in the next 

chapter. 

2. NPS AUV-SIM2 

The NPS AUV -SIM2 system developed by Nordman [Ref. 9] 

utilizes a 3-D visualization model of the proposed NPS AUV based on the 

SDV's dynamics and shape and on preliminary NPS hydrodynamic test data 

gained from experimentation with the NPS Model 1 AUV [Ref. 32]. The 

water environment for this simulator is modelled after the proposed initial 

test site for the NPS Model 2 AUV, which is a swimming pool measuring 

approximately 120 by 60 by 8 feet. Figures 3.2 and 3.3 are 3-D simulator 

views of the dynamic model and represents the initial design of the NPS 

AUV. The actual vehicle will differ somewhat from this simulator view 

due to a new rudder design and a slightly different body shape. 
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Figure 3.2 NPS AUV-SIM2 

Figure 3.3 NPS AUV-SIM2 
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This system uses a simple depth or course-error calculation to set 

control surface positions for maneuvers. Manually selected or autopilot 

orders create control surface angles which in tum act on the A UV 

hydrodynamic model to generate hull pitch angles and resulting changes in 

depth and course. This system uses a first order, PID controller that 

produces abrupt and non-linear control surface behavior. However, as 

more advanced control structures are developed, the system's modular code 

structure allows easy installation between the autopilot and the 

hydrodynamic model for testing and analysis. 

This simulator system retains the hierarchical mission planning and 

control structure that was developed for NPS AUV -SIMI. The mission 

planner and controller controls execution of missions by the dynamic 

model by transmitting orders and receiving positional data across 

interprocess communications links. In this format, the simulator provides 

an excellent "laboratory environment" for prototyping and development of 

advanced AUV planning, navigation, and control subsystems. The original 

version of this simulation system utilized a simplified mission selection, 

planning, and control structure designed with the KEE expert system shell. 

This thesis research further upgrades this simulation system by expanding 

use of the expert system shell to develop an AUV Mission Planning and 

Control Workstation as a prototype for use on an A UV deployment 

vehicle. 

3. NPS AUV -SIM3 

This simulator is identical to the NPS AUV -SIM2, with the 

exception that the AUV dynamics model has been upgraded with better 
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graphics drawing algorithms and a more advanced controller. The 

dynamic model used with this simulator system currently uses a Sliding 

Mode Control (SMC) system, but is also being used for experimentation 

with the Adaptive Variable Structure Control (A VSC) system. 

One part of this thesis research was to enable this model to be 

driven in the autopilot (simulated autonomous) mode in the same manner as 

NPS AUV -SIM2. This system takes different inputs to operate its control 

surfaces, thus requiring an interface upgrade to couple the computer 

system that houses the 3-D dynamic model with the system that houses the 

mission planning and control system. The interprocess communications 

software used with NPS AUV -SIM2 was also used with this system with 

only minor modifications. This interface was also modularized to facilitate 

ease of alteration if the need arises during future research. 

This simulator is primarily used for testing of new controller 

algorithms and hydrodynamic equations. 

D. MISSION PLANNING AND CONTROL WORKSTATION 

As reported by Bane and Ferguson [Ref. 34] and more recently, by 

Nordman [Ref. 9], the U.S. military has identified well over 70 military 

missions especially suited for unmanned submersibles, in particular, 

autonomous unmanned submersibles. Concurrent with development of 

these autonomous systems, an equal amount of thought and effort must be 

devoted to developing comprehensive, easy-to-use, and fully interactive 

mission planning and control workstations for use by operational 
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personnel. These systems must facilitate easy as well as rapid response 

programming to meet the particular mission scenarios at hand. 

This area of A UV development has not been fully explored during 

previous research at NPS and is a major portion of this thesis research 

effort. The goal of this effort was the development of a robust and user

friendly A UV Mission Planning and Control Workstation that could be 

used as a prototype for possible use aboard AUV deployment platforms. 

Development of this workstation starts with the mission planning and 

control structure developed by MacPherson and Nordman [Refs. 8,9] and 

extends the use of the KEE expert system shell to produce a system that is 

completely mouse and message driven. The workstation contains mouse 

actuated method units for AUV deployment/recovery actions, 

communication channel selection, type mission selection, and goal 

parameter selection. After mission and goal parameters are selected and 

the current location of the AUV (xy-coordinates and depth-under-the-auv) 

is obtained, the data is sent to a path-planner that uses a best-first search 

algorithm to plan the mission path. A Mission-Plan display panel shows 

mission parameters after the path planning has been completed, to include 

start location, goal location, and subgoal locations along the path. During 

mission execution, additional display units show orders sent to the AUV 

(ordered course, depth, and speed), and data received from the AUV, to 

include, positional data (xy-coordinates and depth-under-the-auv), actual 

heading, actual depth, and rpm. This latter information is transmitted over 

interprocess communication channels as part of the simulation system and 

represents data that might be transmitted via fiber-optic cabling between a 

34 



deployed A UV and a deploying platform. The NPS Model 2 A UV will be 

outfitted to operate with or without a fiber-optic cable for data flow back 

to the deployment site, but will receive movement orders from a pre

programmed on-board computer. Additionally, information messages are 

printed to a typescript window to guide the user each step of the way 

during the mission planning and execution process. 

A more detailed description of this workstation is included in the next 

chapter. 

E. MISSIONS UPGRADE 

The missions programmed into the NPS AUV simulators are described 

in detail by Nordman [Ref. 9]. These missions are divided into four main 

categories: payload/transponder delivery, charting, reconnaissance, and 

surveillance. A fifth category, "test.pool", was added by Nordman to NPS 

A UV -SIM2 and 3 to facilitate testing the dynamic model of the NPS Model 

2 AUV in a representative water environment. The code for this mission 

and supporting functions has been modified to facilitate data flow for 

operation and testing of the Mission Planning and Control Workstation. 

The other missions are designed for testing AUV response in the open

ocean environment (NPS AUV -SIMl) and have not been upgraded to work 

in the test pool environ1nent. This upgrade has been reserved for future 

research. 

F. MISSION PLANNER/DYNAMIC MODEL INTERFACE 

During the development of NPS AUV -SIM3, it was desired to enable 

the enhanced dynamic model to be driven in the autopilot mode in the same 

35 



manner as NPS AUV-SIM2. As this new model uses a different controller 

from that used with the earlier simulator, and requires different inputs to 

control the model's control surfaces, it was necessary to modify/upgrade 

the interface between the computer graphics system and the mission 

planning and control system to simulate autopilot control. This process 

proved to be extremely cumbersome and time consuming and involved 

modification of a sizable portion of code in the AUV dynamic model's 

primary graphics file with a few additional modifications to supporting 

files. To make it easier to interface future 3-D graphics models with the 

mission planning and control system, the code within the graphics file that 

is required for this interface has been converted to a modular format. This 

will allow development of any new interface requirements to be completed 

"outside" the main body of code, with a simple and rapid swap of modules 

for testing of the new system. 

G. SUMMARY 

This chapter provides a detailed discussion of the problems considered 

for this study and the approach to providing solutions. A very general 

description of the evolution of the NPS AUV is included as well as a 

description of the simulator systems that have been developed to facilitate 

testing of certain planning and control sub-systems in a realistic 

"laboratory environment." Additionally, the characteristics and utility of 

the Mission Planning and Control Workstation are presented. 
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IV. AUV SIMULATOR DESCRIPTION 

A. INTRODUCTION 

This chapter describes, In detail, the NPS AUV -SIM2 simulation 

software with the addition of the Mission Planning and Control 

Workstation. The NPS AUV-SIMl was described in detail by MacPherson 

[Ref. 8] and Nordman [Ref. 9] and its characteristics were summarized in 

the previous chapter. Because of its limited use at this point in the NPS 

AUV development, it will not be discussed in any detail in this chapter. 

The description starts with an overview of the hierarchical AUV 

software architecture and how each level of the structure carries out its 

assigned tasks. This structure was described in detail by Nordman [Ref. 9], 

but portions of that description must be repeated here for clarity and 

continuity. 

The last section of this chapter is a user's manual which repeats 

portions of the Nordman [Ref. 9] manual, also for clarity and continuity. 

B. SIMULATION FACILITIES 

As previously discussed, all three simulator systems run on 

interconnected workstations that communicate across interprocess 

communications lines. The systems used are LISP machines for mission 

planning and control and IRIS graphics machines for 3-D visualization of 

dynamic models and mission execution. 
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The Symbolics 367 5 and Texas Instruments (TI) Explorer II LISP 

machines were available for mission and planning level simulator control 

and the IRIS 4D/70GT an~ the Silicon Graphics IRIS-2400T graphics 

workstations were available for the simulator execution level and 3-D 

display. The older IRIS-2400T graphics workstation is used for the NPS 

AUV -SIMI simulator system and can be controlled in the autopilot mode 

from either the Symbolics or the TI Explorer LISP machines. Operation 

of this combination is described in detail by Nordman [Ref. 9]. The 

Symbolics LISP machine and IRIS 4D/70GT graphics workstation 

combination was chosen as the primary configuration for NPS A UV -SIM2 

and 3, and for development of the Mission Planning and Control 

Workstation. 

1. Symbolics LISP Machine 

The LISP machine is aptly described by Nordman [Ref. 9]. "This 

machine is an advanced single-user workstation that uses the KEE software 

development shell to support development of large-scale and complex 

artificial intelligence programs. The programming environment includes 

very high speed proprietary processors, a large memory, sophisticated 

caching and memory-management system, high-resolution black-and-white 

graphics, support for color image processing, and networking facilities. 

The KEE shell gives the operator a productive and intuitive programming 

environment for developing large and complex applications." 

The Symbolics 3675 was chosen over the TI for development of the 

NPS AUV simulation systems because it incorporates a Pixar Image 

processing computer which offers significant advantages for future 
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research and also possesses a color terminal suitable for graphical 

representation of mission execution. The TI LISP machine offers neither 

of these features [Ref. 9]. 

2. Silicon Graphics IRIS 4D/70GT 

This system architecture uses multiple RISC-based CPUs with a 

high-speed 64-bit data bus and a 96-bitplane raster subsystem. In addition 

to a very fast hardware Geometry Engine, the Unix-based software 

supports high speed image generation and updating for object-oriented 

programming. The system readily supports a higher update rate for a real

time A UV simulation while simultaneously incorporating graphics lighting 

and shading models [Ref. 9]. 

C. CONTROL SYSTEM ARCHITECTURE AND LANGUAGES 

This thesis has preserved the hierarchical system architecture 

implemented by MacPherson [Ref. 8] for development of the Mission 

Planning and Control Workstation. This architecture also provides the 

basic framework for the software structure of the NPS Model 2 AUV. 

The software system divides control among three areas: the mission 

level, the planning level, and the execution level, as can be seen in Figure 

4.1. The top level of this architecture is the mission level--a knowledge 

base implemented using the KEE software development shell. This 

knowledge base has been expanded to include a Mission Planning and 

Control Workstation. This workstation is composed of two parts; a 

Mission Planning and Control Panel (Figure 4.2) and an external color 

display monitor. The panel allows selection of certain parameters at the 
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mission level and provides display units for monitoring the results of 

software operations during the planning level and real-time feedback data 

from the 3-D dynamic model during the execution level. The external 

display monitor provides a 2-D representation of the AUV's track during 

mission execution. 

KNONL.EDGE BASED 
SUPERVISOO 
MISSION SELECTION 

RULE-BASED 
.....:..:.:...:..:..:.;:::.:,:..:...:.:..:__....._---IP---~ PATH-PLANNER, 

OBSTACLE 
AVOIDANCE 

MISSION 
LEVEL 
(KEE) 

PLANNING 
LEVEL 
(COMMON LISP) 

EXEa.rro-.J 
LEVEL 
(C) 

Figure 4.1 Hierarchical System Architecture 
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Operations begin with the operator interacting directly with the 

knowledge base by selecting "deploy" on the AUV -Deploy/Recover sub

panel. This action initializes all display units and prompts the operator to 

set up the 3-D dynamic model in the "autopilot" mode, select the 

appropriate communication channel to the graphics workstation, select the 

desired mission, and select desired goal parameters. Once these steps have 

been completed, the operator is prompted to access the current location and 

depth of the AUV. This information along with the mission selection data 

is then passed to the planning level for the mission planning process. 

After the required mission selection information is passed to the 

planning level, the path-planner and navigator plan the best path to the 

desired goal. The path-planner and navigator are Common LISP software 

modules that consult the environmental database for the location of known 

obstacles, and then use a best-first search algorithm to plan the desired 

path. Upon completion of the path planning process, this path, which 

consists of the starting location, the goal location, and a series of subgoals, 

is reported to the mission level and is displayed on the Mission Planning 

and Control Panel. 

Once supplied with the mission parameters and a path to the mission's 

goal, the planning level prompts the operator to actuate the third level--the 

execution level. Maneuvering parameters in the form of autocourse, 

autodepth, and autospeed, are forwarded to the graphics workstation via 

the communications network and are interpreted by the execution-level 

autopilot as control surface commands that put the simulator's AUV on the 

path's course, speed, and depth [Ref. 9]. The execution level software 
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includes provisions for sensor modules that can provide simulated 

electronic, acoustic, and visual environmental inputs to the AUV3 . These 

inputs, as well as AUV position data, is passed back up the hierarchy to the 

navigator where the data is analyzed, displayed on the control panel, and, if 

necessary, acted on. 

AUV position data is also passed by the navigator to an external color 

monitor that displays the AUV track as the mission is being executed. This 

display consists of a 2-D scale representation of the test pool environment, 

where multi-colored icons represent the AUV's start location, goal 

location, and track. The display monitor track, which is retained for 

analysis until "cleared", also provides an additional means of analyzing the 

path-following accuracy of the AUV. 

Once the mission is complete, the operator is prompted to close the 

communications channel, to recover the AUV (re-initializes the control 

panel display units), and to save and delete the knowledge base, if no more 

mission runs are desired. 

1. The Mission Level 

The KEE software development shell was used to develop the 

mission level. KEE's representational features, reasoning and analysis 

systems, and access to knowledge with KEE graphics tools offer many 

advantages in developing applications, not the least of which, is the ability 

3 The NPS AUV -SIMI simulator system utilizes these simulated sensor 
inputs for the open-ocean missions. However, the NPS AUV -SIM2 and 3 
systems have been programmed for the test pool environment only and do not, as 
yet, use these inputs. 
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to build functional application prototypes, complete with user interfaces, in 

a short period of time [Ref. 37]. 

The structure of this . knowledge base is made up of image panels, 

frames (units), methods, and active images. A knowledge base can contain 

behavioral, as well as, descriptive knowledge. Behavioral knowledge is 

represented in the KEE system by methods. Each method is a small LISP 

program, and whenever the method is called, the program is run. The 

method carries out whatever task it is instructed to do and can run from the 

very simple to very complex algorithms. 

In this simulation system, the mission planning and control panel is 

made up of active images, which are either mouse actuated images that call 

methods, or display units that display analog, digital, or literal data. Image 

panels are used to group or organize related active images, and, in some 

cases, contain sub-panels that also contain active images. 

As described in the previous section, missions are normally selected 

by mouse activating the appropriate active image. The structure of this 

knowledge base also graphically links related portions of the knowledge 

base on a tree diagram that allows inheritance of information down the 

hierarchy from parent to child nodes. This facility also allows activation 

of the missions by selecting ,with the mouse, the desired mission at the leaf 

nodes of the tree. After a selection is made in this manner, the operator is 

prompted for additional information that is used to plan and execute the 

miSSIOn. This, however, is not the recommended way to operate the 

simulation system. Figure 4.3 shows the graph of the knowledge base 

developed for this simulation system. 
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Currently, only the test. pool "transit" mission has been fully 

programmed for use with the Mission Planning and Control Workstation 

and is used to test the dynamic model's propulsion and control subsystems. 

2. The Planning Level 

The planning level is also written in Common LISP and runs on the 

Symbolics LISP machine for this simulator. As described earlier, this level 

consists of a number of software modules that compose the mission 

navigator, path planner, and environmental database. After the path 

planner receives mission selection data and plans an appropriate mission 

path, the navigator receives orders from the mission level and provides 

corresponding guidance commands to the execution level. Using frequent 

data exchanges via the communications interface, the navigator provides 

the execution level with information on the next subgoal, the autopilot 

course, speed, and depth, and the commands required to execute the 

current phase of the mission. The planning level receives sensor and 

positional data from the execution level and modifies mission commands as 

necessary for the next data exchange. 

3. The Execution Level 

The execution level is written in C and runs on the IRIS 4D/70GT 

graphics workstation. This level is the lowest level of A UV control and 

executes either manual or autopilot commands to update the vehicle and 

environmental displays. 

In the manual mode, in addition to being able to "fly'' the A UV 

model by varying the control surface positions, the operator can change the 

viewer's perspective of the environment by manipulating mouse controlled 
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slider bars on the control panel to vary the viewing distance, elevation, and 

azimuth. This feature is available on both the NPS AUV -SIM2 and 3 

simulation systems. 

The control surfaces of the A UV model in the NPS A UV -SIM2 

simulation system are varied by assigning desired angles. The NPS AUV

SIM3 simulation system differs in that the AUV model takes ordered 

headings (+180 degrees to -180 degrees) and ordered depths (150 units up 

to 150 units down) and the control surfaces are programmed to move 

appropriately to achieve the ordered heading/depth. 

In the autopilot mode, the execution level interprets planning level 

commands and positions the A UV control surfaces to achieve the ordered 

parameters. At each update of the 3-D visual display, the execution level 

passes sensor and position data up the hierarchy to the planning level where 

it is displayed on the control panel and acted on, if appropriate. 

D. COMMUNICATIONS SOFTWARE 

During execution-level operations, interprocess communications 

support must be available for data transfer between the execution-level 

code on the IRIS graphics machine and the planning -level on the LISP 

machine. Communications modules in the code of each workstation link 

the systems via an Ethernet cable; each module passes the same data types 

and structures in slightly different formats. 

Figure 4.4 shows the communications flow of information between the 

two workstations. The diagram shows both workstations having individual 

send and receive ports. Actually, two ports are used on the LISP machine 
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but all data is transferred through a single port (dual socket) on the IRIS 

graphics workstation. The drawing arrangement has been simplified for 

clarity. 

The Mission Planning and Control Panel allows the operator to select 

one of two communications paths: IRIS-5 for NPS AUV-SIM2 and 3, or 

IRIS-3 for NPS AUV -SIMI. The operator selects the machine on which 

the communications will be run, which determines what portions of the 

communications modules will be used to support the simulation. The data 

exchange between the LISP machine and the IRIS graphics workstation 

allows the planning level to pass guidance commands to the execution-level 

which controls the actions of the AUV dynamic model during execution of 

the mission. The guidance commands are autocourse, autodepth, and 

autospeed. The execution-level, in tum, passes sensor and AUV position 

data over the communications network to the planning level for 

information display and actions by the navigator, if required by the mission 

profile. Data transfer occurs approximately every three seconds during the 

execution-level process. 

The communications code is adapted from MacPherson [Ref. 8] for 

NPS AUV-SIMl and from Nordman [Ref. 9] for NPS AUV-SIM2 and 3. 

This thesis research found no need and made no attempt to modify these 

communications systems. 

E. USER'S MANUAL 

The NPS A UV -SIM2 and 3 simulators are completely mouse and 

message driven. Messages printed in the typescript window of the Mission 
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Planning and Control Panel prompt the operator for input that can be 

accomplished with mouse actuation of certain active images on the panel. 

This manual assumes some basic familiarity with the Symbolics LISP 

machine and the IRIS graphics workstation. Some very basic experience is 

required with the KEE expert system shell and the UNIX operating system 

for startup and shutdown of the simulator, but not for its operation. 

NPS AUV-SIMl is discussed in detail by Nordman [Ref. 9] and will not 

be covered in this manual. This manual does repeat portions of the 

Nordman [Ref. 9] user's manual for continuity. 

1. Graphics Workstation Operation--IRIS 4D/70GT 

a. NPS AUV-SIM2 

The NPS AUV dynamic model may be operated in either the 

manual or the autopilot modes. This simulation is normally run on the 

IRIS 4D/70GT (IRIS-5) because of its close proximity to the LISP 

workstation, which allows easy viewing of both workstations during the 

autopilot mode of operation. However, the IRIS machines are networked 

in a manner that allows the simulation to be run on either IRIS-1, IRIS-4, 

or IRIS-5. 

To start the simulation, "log on" to both the IRIS workstation 

and the side terminal of the IRIS and transfer to the directory 

/usr/work!nordmanl symbolics/auvsim. Start the program in the manual 

mode by entering the command auv on the side terminal followed by a 

carriage return. 

The simulated AUV starts on the surface at a speed of 25 rpm 

on course east. All manual control in this simulator uses the mouse to 
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manipulate sliding markers on the control panel at the right side of the 

main terminal display. To alter the viewer's perspective or to change AUV 

parameters, press and hold the left mouse button, and drag the marker to 

the desired new value for that parameter. (Changes to the viewer's 

perspective should be executed slowly or the user may lose his own 

perspective in the display.) Care should also be taken when manipulating 

the markers that change the control surface angles. The sliding markers 

for the rudder and the dive planes4 are tied together and can be operated 

simultaneously to fly the AUV around the test pool environment. To 

operate the rudder independently of the planes, the mouse cursor must be 

placed at the 0 degree level of the dive plane control and moved left or 

right for independent rudder control. For simultaneous operation of 

control surfaces, simply drag the mouse cursor to the desired dive plane 

angle, and while keeping the cursor at the desired level, move the cursor 

left or right of the dive plane control bar for simultaneous rudder 

operation. 

At very low speeds, the AUV may slowly roll from side to 

side. This is caused by an instability in the mathematical model at low 

speeds and raising speed will restore proper control surface effects on the 

hydrodynamic drag model and should damp out this motion. 

4 The dive planes consist of both bow and stern planes. When the dive 
planes angle is changed using the mouse-controlled sliding marker, the bow and 
stern planes move to the requested angle but in opposite directions. This is a 
simplified representation of how a submarine would operate with bow and stem 
planes. 
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The autopilot mode is started by pressing the A-key on the 

main keyboard of the IRIS machine. The AUV should be driven to the 

desired starting location prior to activating the autopilot mode. (The AUV 

can be returned to the original starting position of the manual mode by 

pressing the ESC-key.) Additionally, once the autopilot mode has been 

activated, the display must be secured and restarted to return to the manual 

mode of operation. After activating the autopilot mode, the side terminal 

will indicate that the IRIS server is waiting to connect to syml (the 

Symbolics LISP machine) and the following message will prompt the 

operator to start the KEE portion of the simulator to connect the LISP 

client to the IRIS server: 

Start the autopilot program on the lisp machine. 
Then hit any IRIS key to send initial AUV position. 
Server waiting to connect to SYMJ 

The autopilot execution can be interrupted by pressing the Q

key; the autopilot cannot be restarted at this point, but manual control of 

the AUV is available. Prior to restarting the IRIS 4D/70GT simulator 

autopilot, ensure the previous communication socket connection has been 

completely broken. To do this, list the current processes by entering the 

Unix command ps on the side terminal keyboard. A list of active processes 

and process numbers will appear. Stop any send/receive communications 

daemons with the kill <process number> command. (Inexperienced 

operators may require assistance for this step.) 

b. NPS AUV-SIM3 

This simulator is basically the same as NPS AUV -SIM2, with a 

few minor exceptions. To start the simulation, "log on" to both the IRIS 
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workstation and the side terminal and transfer to the directory 

/usrlworklrogerslmythesislmysymbolicslauvauto. Start the program in the 

manual mode by entering the command autoauvs on the side terminal 

followed by a carriage return. Also, type the command gclear on the side 

terminal to initialize the mouse. 

The simulated AUV starts on the surface at a speed of 250 rpm 

on course north. Manual control in this simulator uses the mouse to 

manipulate sliding markers on its control panel as with the previously 

discussed simulator. However, the control surfaces for this simulator do 

not respond to ordered angles. AUV depth is changed by selecting an 

ordered depth (150 units up to 150 units down), and AUV heading is 

changed by selecting an ordered heading (-180 degrees to +180 degrees). 

The depth and heading sliding markers operate independently. 

All other operations of this simulator are the same as those for NPS 

AUV-SIM2. 

2. LISP Machine Operations--Symbolics 3675 

a. NPS AUV-SIM2 

On the Symbolics LISP machine, ensure that the KEE expert 

system shell software is loaded. (It is accessed by entering SELECT -K.) If 

the shell is not loaded, a cold boot of the machine will be required; an 

inexperienced user should refer to posted instructions near the machine or 

get staff assistance at this point. Once KEE is available, "log on" in the 

LISP Listener window and then press the SELECT-K combination on the 

keyboard to move to the KEE desktop. Ensure that the Symbolics external 

monitor is ready by depressing the "on" button, depressing the 
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"degaussing" button and holding for at least 2 seconds, and turning the 

brightness knob fully clockwise. Once the KEE desktop is available, there 

are two methods of loading the knowledge base: 

(1) Use the mouse and point the cursor at the latchkey icon located at 

the upper left comer of the screen and depress the left mouse button. A 

pop-up menu will appear offering KEE Commands; select the Load KB 

command by pointing at the command with the mouse cursor and 

depressing the left mouse button. A KEE "typescript" window will appear 

requesting the name of the knowledge base to be loaded; enter 

sym4:>rogers>controlpanel-file>auvcp.u followed by a carriage return. 

KEE will load the A UV Mission Planning and Control Panel knowledge 

base along with the LISP code files containing the planning level functions. 

(This process will take approximately 2 minutes.) Once the files have been 

loaded, a black icon will appear on the screen. (This is a prompt to enter 

an input by depressing one of the mouse buttons.) Depress the left mouse 

button and the image panels of the Mission Planning and Control Panel will 

appear one at a time. The external monitor will also expose a display 

window with a 2-D scaled grid pattern of the test pool environment. If the 

"typescript" and/or the "LISP listener" windows are not in the correct 

position and partially obscure the image panels, point the mouse cursor at 

the top bar of these windows and depress the right mouse button. A menu 

will appear that will allow the operator to select move and reshape. Select 

these options one at a time and move and reshape the windows as 

neccessary to clear the image panels. The Mission Planning and Control 

Workstation is now ready for operation. 
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(2) This method is somewhat slower than the first method but loads a 

preset desktop arrangement with the knowledge base. Use the mouse and 

point the cursor at the desktop icon located at the upper left comer of the 

screen and depress the left mouse button. A pop-up menu will pointing at 

the command with the mouse cursor and depressing the left mouse button. 

A KEE "typescript" window will appear requesting the name of the 

desktop to be loaded; enter sym4:>rogers>controlpanel-file>auvcp.desktop 

followed by a carriage return. KEE will load the A UV Mission Planning 

and Control Panel knowledge base along with the LISP code files 

containing the planning level functions. If an old desktop was on the screen 

upon logging on, it will need to be cleared before the auvcp desktop can be 

loaded. The "typescript" window will request the operator select one of 

the following options: Respecify, Flush Old Desktop, Rename Desktop, or 

Debug; enter Flush Old Desktop followed by a carriage return. The 

screen will then clear, after which, the pre-set desktop and the image panels 

for the control panel will appear. The Mission Planning and Control Panel 

is now ready for operation. 

To start the simulation, select the deploy command by pointing 

the mouse cursor at the deploy method actuator in the Panel-Controls 

section of the control panel and depressing the left mouse button. This 

action will initialize all display units on the panel and cause a series of 

prompts to be printed in the KEE typescript window. 

If not already accomplished, ensure the A UV portion of the 

simulator on the IRIS 4DnOGT has been placed in its autopilot mode and is 

waiting to connect to the Symbolics LISP machine (Syml ). 
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Prior to selecting . a mission, a communications channel must be 

opened to the IRIS workstation. Select IRIS -5 by pointing the mouse 

cursor at the IRIS-5 method actuator on the Panel-Controls section of the 

control panel and depressing the left mouse button. This will start the 

TCPIIP software on the LISP machine and locate the correct IRIS port(s) 

for data exchange. Currently, IRIS-5 contains all the files for the graphics 

portion of this simulation system. (IRIS-3 contains the files for the 

graphics portion of NPS AUV-SIMl.) The following message should be 

appear in the KEE typescript window: A conversation with the IRIS 

machine has been established. 

Select a mission by pointing the mouse cursor at the desired 

mission method actuator in the Mission-Selection section of the control 

panel. (Currently, only the Transit mission is fully programmed to work 

with this simulation system.) A series of messages will now appear in the 

KEE typescript window to prompt the operator to select appropriate goal 

parameters for the mission selected. Select goal parameters by pointing the 

mouse cursor at each of the required method actuators in the Goal

Selection section of the control panel, one at a time, and depressing the left 

mouse button. A calculator will appear on the screen to facilitate inputing 

the desired values. Select all desired numbers for a particular parameter 

value and then select enter with the mouse when the appropriate value has 

been entered in the calculator window. This action will cause the 

parameter value to appear in the appropriate parameter window on the 

control panel. This process must be repeated for each goal parameter 

required for the selected mission. Once the values for all parameters have 
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been entered, select Set-Data by pointing to the method actuator with the 

mouse and depressing the left mouse button. This causes the goal data to be 

transmitted to the planning level of the simulator. 

A prompt will now ask the operator to access the AUV initial 

position data from the IRIS workstation. This is accomplished by 

depressing any key on the IRIS keyboard. When this step is accomplished, 

the following message should appear on the screen of the IRIS side 

terminal: 
Initial position written to lispmachine-hit any key when the 
lispmachine completes its search. 

Upon completion of this step, the x-position, y-position, and 

depth-under-the-auv should appear in the KEE typescript window of the 

Symbolics machine. This completes the data needed by the planning level 

to compute the mission path and this process starts without further action 

by the operator. When the mission path has been computed, the starting 

location, goal location, and subgoal locations will appear in the Mission

Plan section of the control panel and in the KEE typescript window, 

preceded by the following message: autopilot course on the first leg is: . 

Start autonomous simulator execution by pressing any key on the IRIS 

keyboard. 

If necessary, the A UV simulation can be stopped by entering 

CONTROL-ABORT at the LISP machine or by pressing the Q-key on the 

IRIS keyboard. Once the simulator has completed its mission or after 

abortion of the mission, the Symbolics-IRIS communication socket 

connection must be closed by selecting Close on the Panel-Controls section 

of the control panel with the mouse and depressing the left mouse button. 
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The control panel should be reset at this point by selecting Recover on the 

Panel-Controls section of the control panel. This action re-initializes the 

control panel display units and the Symbolics external monitor, and a series 

of prompts will appear in the KEE typescript window to direct the 

operator in securing the knowledge base (if no more runs are desired). If 

the knowledge base has not been secured, the simulation may be restarted 

by securing and restarting the IRIS portion of the simulator, and repeating 

the steps listed above at the point of selecting a communications channel. 

b. NPS AUV-SIM3 

From the Symbolics workstation, the steps for activation and 

operation of this simulation system are exactly the same as those listed 

above for NPS AUV-SIM2. 

I. SUMMARY 

This section describes the NPS A UV -SIM2 and NPS A UV -SIM3 

simulation systems, which includes the Mission Planning and Control 

Workstation. The description starts with an overview of simulation 

facilities followed by a detailed discussion of the control system 

architecture and the high-level programming languages used in the various 

levels of its hierarchy. A subsequent section gives a brief description of 

how the interprocess communications system is used for information 

exchange and control of the execution-level of the simulations. The final -

section of this chapter contains the User's Manual to assist in operating the 

various workstations to run these simulations. 
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V.EXPERIMENTAL RESULTS 

A. INTRODUCTION 

This chapter evaluates the utility of the Mission Planning and Control 

Workstation and presents experimental results relating to upgrades to the 

mission planner/dynamic model interface. All tests were conducted using 

the NPS AUV-SIM2 and 3 simulator systems. 

B. AUV SIMULATION FACILITIES 

1. The Original Mission Planner 

The original mission planning module at the top level (mission 

level) of the software structure of the NPS AUV simulation systems was 

efficient but lacked the robustness and display features typical of operator's 

consoles for equipment as complex as autonomous systems. 

After the original knowledge base was loaded, the AUV Simulator 

Mission Selection Tree was drawn in a window labelled The Graph of the 

AUV Knowledge Base . This graph was in a tree format similar to Figure 

4.3, but only consisted of the mission-selection node at the top level of the 

tree and the generic missions located at the leaf nodes of the tree's 

branches. A mission was selected by using the mouse to point to the 

appropriate leaf node and pressing the left mouse button. This action 

would cause a pop-up menu of Unit Commands to appear. Selecting the 

Send Message option from this menu, with the mouse, would result in 

another pop-up menu of Message Types to appear. From this menu, the 
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appropriate message that would start the selected mission would be selected 

and a series of messages, printed in the KEE typescript window, would 

prompt the operator to enter the required mission parameters from the 

keyboard. 

When the typescript window announced that it had connected with 

the appropriate IRIS workstation, the current location of the AUV was 

accessed by the operator, and the path planning process was initiated when 

this data, along with the goal parameters, was passed to the rule-based path 

planner at the planning level. The remainder of the process is the same as 

that of NPS AUV-SIM2 and 3 (described in the previous chapter). 

The procedure just described, though efficient, offered no feedback 

information to the operator and required more knowledge about the inner

workings of the KEE expert system shell than was felt necessary. 

2. Mission Planning and Control Workstation 

The concept of developing the Mission Planning and Control 

Workstation was conceived for two purposes: (1) to more fully investigate 

the facilities and advantages of the KEE software development tool, and (2) 

to create an informative, versatile, and easy-to-operate workstation as a 

prototype for use aboard A UV deployment platforms. To meet the second 

goal, it was desired that the workstation include clear and concise facilities 

for selecting missions, goal parameters, and communications channels, and 

include information display units to show the results of mission planning 

and AUV operating status (during mission execution). AUV operating 

status could possibly include pre-deployment readiness information, real

time feedback information from an A UV equipped with an electronic data 
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link or fiber-optic cable, or expected track information based on the 

selected mission profile. 

The Mission Planning and Control Console meets all of the 

aforementioned desires/requirements. The control panel includes sub

panels for mission selection, goal selection, communications channel 

selection, and selection of deployment and recovery functions. Additional 

sub-panels provide display units for mission plan parameters (start 

location, goal location, and subgoallocations), guidance commands to the 

AUV (autocourse, autodepth, autospeed), and AUV operating status (xy

coordinates, depth-under-the-auv, heading, depth, and rpm)5. The 

operator is prompted by messages printed to the KEE typescript window 

for each step of the mission selection and planning process, and all actions 

performed by the operator are accomplished using the mouse. Also, care 

has been taken to avoid "information over-load" in the selection and 

structure of the control panel units and the content of the message prompts. 

An operator should be able to perform all required functions easily and 

without guesswork. 

This particular version of the control panel is designed to support 

the simulation systems, NPS AUV-SIMl, 2, and 3, but can be readily 

modified to support shipboard AUV deployment systems. Each unit on the 

selection sub-panels are active images that activate methods (sub-programs) 

that perform certain functions that range from simply printing message 

5 The control panel is currently arranged to support the requirements of 
the NPS AUV simulation systems, but can be easily reconfigured for shipboard 
use where data feedback may not be available during mission execution. 
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prompts to executing complex algorithms [Ref. 37]. These methods are in 

modules that can be easily displayed and edited on the KEE desktop and 

offer an almost endless range of possibilities for the functionality of the 

control panel. 

An additional feature of the Mission Planning and Control 

Workstation is the external color monitor that is controlled by the LISP 

code at the planning level of the software hierarchy. This monitor displays 

a 2-D representation of the AUV's track during execution of missions using 

the NPS AUV -SIM2 and 3 simulation systems and the code could be easily 

modified to display the track of an actual AUV during post-mission 

analysis. This provides a very nice analysis tool for verifying the correct 

operation of the AUV. 

The experimental results of using the Mission Planning and Control 

Workstation versus the original mission planning mechanism is not judged 

in the form of increased speed of operation, but in the form of increased 

functionality, breadth of information available to the operator, and 

adaptability to enhanced systems. By extending the use of the KEE expert 

system shell to develop the Mission Planning and Control Workstation, an 

improved man-machine interface has been created that greatly contributes 

to the "laboratory environment" afforded by using the NPS AUV 

simulation systems and additionally, provides a very adaptable prototype 

for a shipboard AUV deployment and control system. 

a. Analysis of a Typical Mission Profile Test 

Numerous tests were conducted during the development of the 

Mission Planning and Control Workstation to verify the functionality and 
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utility of the system. The NPS AUV -SIM2 simulation system offers the 

most realistic characteristics of the actual testing environment for the NPS 

Model 2 A UV and was used in the majority of the testing. 

The User's Manual described in the previous chapter offers two 

methods of loading the knowledge base. Method 1 does not include the 

preset desktop arrangement and can be a little cumbersome for the first 

time user, if the proper desktop arrangement has not been left on the 

screen from a previous mission run. Method 2, though a little slower in 

some cases, does provide the preset desktop arrangement and is the 

recommended method of loading the knowledge base for new operators. 

Once the know ledge base has been loaded and the Deploy icon (located in 

the AUV -Deploy/Recovery sub-panel) is activated using the mouse, 

message prompts written in the KEE typescript window guide the 

operator's every step to set up and run a test mission. 

The first step in setting up the simulation system to conduct a 

test mission run is to load the execution level A UV dynamic model 

subsystem in the autopilot mode. The model can be driven to any desired 

position within the test pool environment using the manual mode and then 

placed in the autopilot mode by pressing the A-key on the keyboard of the 

IRIS machine. For all of the test runs conducted, the AUV model was 

placed in the lower left comer of the test pool environment and given a 

goal that would cause the path-planner to plan a diagonal path across the 

expanse of the test pool that would also pass through the obstacle field. 

This was done to analyze the time required by the path-planner to plan the 

particular mission paths through the obstacle field and also to analyze how 
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the AUV model responded to guidance commands issued by the rule-based 

navigator during the execution of the mission. It was discovered that given 

a goal (600 1100) that required the AUV to transit almost to the opposite 

comer of the test pool environment and to cross the approximate middle of 

the obstacle field, the rule-based path-planner required 7-8 minutes to 

compute the required path. Conversely, if the goal was selected that 

required a path that crossed only about one third of the obstacle field (400 

1100) the path was computed in less than one minute. In certain real-life 

scenarios, requiring 7-8 minutes to plan a fairly simple path of this nature 

might mean the difference between success and failure of the mission. 

Upgraded path planning algorithms will be required to improve this 

feature of the simulation system. 

The Transit mission was selected for all tests, which requires 

the AUV to be driven to a specified goal location in the test pool 

environment and then simply turn around and return to its starting 

location. To support this mission profile, after all mission parameters have 

been passed to the planning level of the software hierarchy, the path

planner plans the path and causes the start location, goal location, and 

several subgoal locations to be printed to the KEE typescript window, as 

well as being displayed on the Mission-Plan sub-panel. If only one subgoal 

is planned, the X-Subgoa/2 and Y-Subgoa/2 display units in the Mission

Plan sub-panel will show the word illegal which tells the operator that the 

path planner only needs one sub-goal between the start location and the 

goal location to accomplish the desired transit. For longer, more complex 

missions, the path-planner will need and will display more subgoals in the 

64 



KEE typescript window and the display units in the Mission-Plan sub

panel. For this scenario, as each subgoal is reached, the subgoallocations 

are updated accordingly in the Mission-Plan sub-panel to reflect the next 

set of subgoals. The actual goal location will also be displayed as a subgoal 

once the A UV model nears that location. 

Once a mission is executed, guidance commands are 

immediately transmitted from the planning level rule-based navigator to 

the execution level dynamic model and the AUV Model begins to move at 

the commanded speed, turns to the commanded course, and proceeds to the 

commanded transit depth. Figure 5.1 shows the Mission Planning and 

Control Panel during a typical test Transit mission run with the model in 

transit toward the designated goal. Its operating status (position, depth, 

course, speed, and depth-under-the-auv) is displayed in the KEE typescript 

window and on the AUV -Operating-Status sub-panel of the control panel. 

Guidance commands are displayed on the Orders-To-AUV sub-panel to 

allow the operator to readily compare ordered parameters to actual 

parameters being fed back from the execution level. As shown, the actual 

heading of the A UV model is 015 as compared to the ordered course of 

012.26033 The actual course is accurate to within 81.7% of ordered 

course, which is acceptable for this level of development. 

Figure 5.2 shows the AUV model transiting the test pool 

environment and Figure 5.3 shows the corresponding AUV track displayed 

on the external monitor of the Mission Planning and Control Workstation. 
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Figure 5.1 Mission Planning and Control Panel-Transit Mission 
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Figure 5.2 AUV Dynamic Model-Transit Mission 

Figure 5.3 Workstation External Monitor-Transit Mission 
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The A UV model's location and attitude correspond to the 

information displayed for the operator at the Mission Planning and Control 

Workstation. The dark cylindrical objects in the background are the pre

staged obstacles that have been placed in the test pool environment to test 

the path planner's ability to plan paths to safely avoid these obstacles. The 

vertical safety distance is 20 units and the A UV model can be clearly 

observed changing depth accordingly when it nears any of the obstacles that 

are within this range of ordered depth. 

The external monitor display actually plots the AUV's track 

during mission execution and provides the operator a ready medium for 

comparing the AUV's "actual" track to its "ordered" track during post

mission analysis. 

Figure 5.4 shows the Mission Planning and Control Panel during 

the return leg of the Transit mission. The AUV model has reached its 

goal, has reversed course, and is returning to its starting location. Figure 

5.5 shows the AUV model in the test pool environment on this return leg 

of the mission, and Figure 5.6 shows the corresponding AUV model's track 

on the external monitor portion of the Mission Planning and Control 

Workstation. Note that the ordered course (autocourse) is 192.129397 on 

this leg of the transit. The actual course, as shown in the KEE typescript 

window, is 193.0, which is within 99.5% accuracy when compared to the 

ordered course. The AUV model appears to be tracking better on the 

return leg than on the initial leg. The variance on the earlier leg may have 

been caused by recording the hardcopy of the screen (LISP machine) just 
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Figure 5.4 Mission Planning and Control Panel-Transit Mission 
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Figure 5.5 AUV Dynamic Model-Transit Mission 

....... _ .......... ...... ......., 

Figure 5.6 Workstation External Monitor-Transit Mission 
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after a slight course change, in which case, the AUV model would still have 

been turning to ordered course. All other indications show that the AUV 

model was following ordered guidance commands accurately. As a case in 

point, Figure 5.6 shows a fairly straight line track to the goal location and 

that the AUV model passed through the middle of this location (designated 

by the magenta circle on the grid) before reversing course to start the 

return leg of the mission. This substantiates the earlier assumption that the 

AUV model followed ordered guidance commands closely. 

Figure 5.6 also shows that the AUV model, though it clearly goes 

back to its starting location as desired, does not return to its original track 

during its return transit. This occurs on this test run because the path 

planner only provided one subgoal between the starting position and the 

goal. These same positions (waypoints) are also used for the return transit 

but in the reverse order. Additionally, the algorithm that designates the 

return transit route for the AUV model deletes the goal position from the 

list of waypoints so as not to confuse the AUV model. When the AUV 

model passes through the goal position and reverses course, if the goal is in 

the list of waypoints that it must pass through, it is too close to this position 

to pass through the point and also maintain the ordered course and will 

begin an infinite circle around this point. Clearly, the algorithm must be 

improved to avoid this problem. Subsequent testing with longer transit 

paths and more waypoints between the starting location and the goal 

revealed that the AUV model does angle back to its original track after 

passing through the goal location and reversing course. This is the desired 
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result, but should occur immediately following the course reversal to avoid 

obstacles that may lie close to its return track. 

The test results shown and described here clearly show the 

functionality of the Mission Planing and Control Workstation and how well 

the AUV dynamic model responds to planning level guidance commands. 

Needed improvements to the path planning algorithm have been identified 

and should be implemented during future research. 

3. Missions Upgrade 

The Transit mission and supporting functions of the Test.Pool 

category were modified to support the various functions of the Mission 

Planning and Control Workstation. Currently, this is the only category of 

mission profiles that support controlling the A UV dynamic model in the 

test pool environment. The other missions support the open-ocean format 

NPS AUV -SIMI simulation system. The modifications to this code provide 

an excellent framework for upgrading more complex mission profiles to 

control the A UV dynamic model and will be the subject of future research. 

4. Mission Planner/Dynamic Model Interface 

Currently, the AUV dynamic model included in the NPS AUV

SIM3 simulation system is primarily used for testing various maneuvering 

subsystem (control surfaces) controller algorithn1s. The software structure 

(C code) of the dynamic model for this simulation system is arranged in a 

modular format, which makes it an excellent vehicle for testing different 

software subsystems. This dynamic model was integrated into a complete 

simulation system, very similar to the NPS AUV -SIM2 system, to allow 

this model to be controlled in the autopilot mode and be fully tested while 
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running mission profiles. Though the test pool environment is not to scale, 

it should be a fairly simple modification to convert the water 

environment's dimensions to conform to those of the pool where the NPS 

Model 2 A UV will be tested. Additionally, the modular format of this 

model allows the external configuration to be easily modified to look and 

perform more like the real vehicle once its characteristics have been more 

fully defined. 

The LISP-IRIS machine interface code has also been put into a 

modular format. This allows the integration of any new dynamic models 

into the simulation syste1n with much more ease than earlier formats. The 

new interface code can be developed outside the main body of the graphics 

package, and modules can be simply swapped for testing of the new model. 

C. SUMMARY 

This chapter presents a summary of the upgrades to the NPS A UV 

simulation systems. The functionality and utility of the Mission Planning 

and Control Workstation is contrasted to the earlier format and a typical 

test of a mission profile is thoroughly analyzed. Next, upgrades to the Test 

Pool mission profiles to support this workstation are discussed. Lastly, the 

integration of the latest version of the A UV dynamic model into a complete 

simulation system that affords both manual and autopilot operation is 

discussed along with, upgrades to the LISP-IRIS machine interface. 
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VI. SUMMARY AND CONCLUSIONS 

A. RESEARCH CONTRIBUTIONS 

As originally reported by Nordman [Ref. 9], the NPS AUV simulator 

systems are important tools for incorporating new control concepts and 

algorithms into the latest version of the NPS AUV. In addition, the KEE 

expert system shell has facilitated the development of a Mission Planning 

and Control Workstation that further extends the development possibilities 

of these simulation systems. At the top level of the software control 

structure, this new utility provides an operator with an informative, easy

to-operate, and totally interactive control panel that allows rapid mission 

planning and execution of the NPS AUV simulation systems. In addition, 

the control panel displays real time feedback data for immediate analysis of 

the operation of the AUV dynamic model. The control panel is a prototype 

for use aboard A UV deployment platforms and can be easily configured to 

display pre-deployment readiness status, real time feedback display, or post 

mission analysis display from a data file generated by the AUV's onboard 

computer. The system also retains the flexibility to allow programmers to 

readily modify or develop new mission and planning level code and 

mission profiles. 

This enhanced "laboratory environment" gives the operator more of a 

feel of real-life operations and is a valuable test and debugging tool that 

will save countless hours of experimentation and allow rapid verification of 
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subsystem software code reliability before installation into the actual 

vehicle. 

B. RESEARCH EXTENSIONS 

Several research extensions of NPS A UV simulation system 

development, discussed by both MacPherson [Ref. 8] and Nordman [Ref. 

9], still apply and must be re-iterated here. These extensions include 

developing faster path-planning algorithms, an A UV vision system for 

mapping and contact classification, an environment for examining high 

resolution sonar data, a hovering mode with appropriate guidance 

command control, and incorporation of a simple and user-friendly 

interface that allows selection of different dynamic models for rapid 

comparative analysis. The current state of the "laboratory environment" 

afforded by the existing NPS A UV simulation systems make these 

extensions not only reasonable, but fairly easily developed and 

implemented. 

Currently, research conducted by Friend [Ref. 38], has made available 

a navigation subsystem algorithm and a corresponding 3-D graphics 

simulation system using simulated inputs from the sonar transducers 

proposed for the NPS Model 2 A UV. This simulation system should be 

integrated into the NPS AUV -SIM2 and 3 simulation systems for further 

analysis and development of sonar subsystem interface software for the 

actual vehicle. 

A research proposal and plan is currently being prepared to develop a 

series of path-planning algorithms that will be specifically tailored for 
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different real-life scenanos (i.e. quick-reaction miSSions, long-range 

missions, close-quarters missions, etc). These algorithms should be readily 

selectable from the Mission Planning and Control Panel and should utilize 

the KEE rules language to develop this interface. 

Current plans for the NPS Model 2 A UV include having two on board 

computers. One of the computers (386-based MS-DOS gridcase) will be 

used for data storage and to possibly house real-time planning level LISP 

code, and the second computer (GESP AC, Motorola-based, 68020, with 

OS-9 operating system) will house the primary autopilot control code, 

written inC or possibly ADA. To fully develop and test the software code 

for this system, the simulation systems should be upgraded to include a 

simulated three computer system by interconnecting a gridcase computer 

between the LISP machine and the IRIS graphics workstation. 

Additionally, research must be conducted to ascertain the best format for 

the software structure of the onboard computer systems and the format of 

the information that is to be downloaded from the mission level to these 

systems. This information could be in the form of mission parameters, a 

set of mission rules, or a combination of both. The onboard systems could 

accept this information and either perform all of the planning level 

functions within its software structure or contain a rule system that would 

allow it to only modify mission plans downloaded to it based on real-time 

situations. Upgrading the simulation systems would allow this research to 

be conducted rapidly and concurrently with the construction of the actual 

vehicle. 
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The NPS AUV-SIM3 dynamic model is being used to develop various 

propulsion and maneuvering subsystem controller software. The modular 

software structure of this simulation system makes this an ideal vehicle for 

this research. The simulation system should, however, be frequently 

updated with the new algorithms and thoroughly tested, both in the manual 

and autopilot modes. Additionally, as the physical design of the NPS 

Model 2 AUV is more fully defined, a new dynamic model should be 

developed to research probable operating characteristics of the new design. 

As testing of the physical vehicle begins, this dynamic model should be 

updated frequently with the most current hydrodynamic data available. 

These simulation systems can provide a highly realistic simulation of the 

actual vehicle's operating characteristics and, if utilized to its fullest 

potential, will produce valuable and timely feedback by quickly 

demonstrating the validity of or the potential problems/side effects created 

by the new design. 

A fully operational and versatile AUV should have the ability to deviate 

from planned mission profiles for obstacle avoidance, mapping of 

unexpected/ interesting objects, etc. and then be able to resume the pre

planned mission or re-plan the mission based on new path information. 

Additionally, the A UV should be "smart" enough to "learn" from 

encounters with previously unknown obstacles so as to plan better paths for 

future missions. 

Nordman [Ref. 9] suggested that the KEE expert system shell's rule 

language could be utilized to implement "interrupt" and "hover" decision 

based code to facilitate obstacle avoidance/exploration behavior by the 
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AUV. KEE provides an excellent rule system that provides an effective 

way to: 1) express information in discrete steps as independent pieces or 

modules of knowledge, 2) express unordered and declarative information, 

and 3) specify conditions under which an action takes place [Ref. 37]. By 

expressing information in rules, the knowledge base remains transparent, 

easily readable, and modular. These characteristics facilitate ready 

development of applications like obstacle avoidance/exploration as well as 

scenario-driven mission and path planning. The current knowledge base 

should be further extended to make use of this facility while retaining the 

Mission Planning and Control Panel format. 

Currently, all of the mission profiles, with the exception of the Test 

Pool category, are written for the open-ocean simulator system, NPS 

AUV -SIMI. These missions should be upgraded to facilitate them being 

run in the test pool environment. This is in preparation for testing of the 

actual vehicle in its water environment. As the characteristics of the NPS 

Model 2 AUV become more well defined, and the simulation systems are 

upgraded to reflect these operating characteristics, more detailed testing 

can be done with the more sophisticated missions to determine inadequacies 

or side-effects of the new design that might not make it practical for 

certain scenarios/situations. Changes to the design could be made 

accordingly. This will provide an excellent medium for validating the 

design as it is being developed, and should facilitate an overall time and 

cost savings in the full development of the NPS A UV. 
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APPENDIX 

This appendix contains files of computer code that is pertinent to this 

thesis research. The two major knowledge base files, auvcp. u and 

auvcp.desktop, are generated automatically by the KEE system as the 

knowledge base is created (active images, image panels, frames, etc). 

These files are not included as they are very long and complex and would 

not practically benefit the reader of this report. The files that are included 

are listed below with brief explanations: 

* 

* 

* 

* 

File ap3 .lisp: File ap3 .lisp gets mission goal position from the 
KEE package and initial AUV position info from the IRIS machine 
and calculates the autopilot course for the simulator to steer during 
mission execution. 

File initkb.lisp: File initkb.lisp initializes the display components 
of the AUV Mission Planning and Control Panel. At the start of 
each mission selection process, all display units are set to zero. 

File monitor. lisp: File monitor.lisp creates a color display screen 
on the LISP machine external color monitor. The display screen 
contains a 2-D representation of the test pool environment for the 
A UV dynamic model. During mission execution, A UV position 
data is sent to this file from from file ap3.lisp and the AUV's track 
is plotted using a colored icon. 

File best.lisp: File best.lisp was created during earlier research 
[Ref. 8] and is provided here for continuity. This lisp code accepts 
start/goal positions from ap3.lisp and uses a best-first search 
algorithm to calculate the appropriate path from start to goal. 
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* File sym-iris-comml.lisp: This file is also provided for continuity. 
It is an updated version of sym-iris-comm.lisp [Ref. 9] developed 
by ProfessorS. Kwak. This file facilitates the interprocess 
communications between LISP machines and IRIS graphics 
workstations for the NPS AUV -SIM2 and 3 simulation systems. 
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;;; -*-Mode. USP ; Symax: Common-lisp; Package: USER . Buse: 10- ""-

: This is rhe file ap3 . This lisp code gers mission goal posin·on from the KEE package 
; and initial AUV position info from tbe IRIS machine and calculates rhe autopilot course 
: for rhe simulator to steer during mission execmion. 

The following missions are designed for the submarine simulator curremly 
running on!RJS3. These are open ocean missions an AUV might be expected 
to carry out. 

(defwz elect _recon_ mission (xdest ydest n·me _on_srarion) 
(transit _to _pt xdest ydest 200 5) 
(come ro PD xdest vdest) 
(record _dara_on_st~tion xdest ydest rime _on_station) 
(transit back 200 5) 
(come to PD xstart ''starr) 
(princ -;,ELECTRONiC MISSION COMPLETED")) 

( deftm photo _recon _mission (xdest ydest time_ on _station periscope_ bearing) 
(transit_toyr xdesr ydest 300 6) 
(come ro PD xdesr vdest) 
(take ylunos _on_st~tion xdest ydest time _on_station periscope _bearing) 
(transit back 300 6) 
(come to PD xstart vstart) 
(princ-;'PHOTO RECON MISSION COMPLETED") 
( srandbyJor _recovery xstart ystart )) 

(defun sonar _search_ mission (xdest ydest searclz_deptlz search _speed) 
(transit _to _pt xdest ydest 300 5) 
(execure_sonar _search xdesr ydest searclz_depth searc.:h_speed) 
( transz t _back 300 5) 
(come ro PD xstart vstart) 
(princ-;'SONAR SEARCH MISSION COMPLETED")) 

(defun execure_sonar _search (xdesr ydesr search_deprh searclz_speed) 
(sonar_searclz (- xdest 30) (+ 5 ydest) search_depth searclz_speed J 
(sonar _searclz ( + xdest 30) ( + 10 ydest) search_ depth searclz_speed ) 
(sonar_ search (- xdest 30) ( + 15 ydest) search_deprh search _speed ) 
(sonar _search ( + xdest 30) (+ 20 ydest) search_ depth searclz_speed ) 
(princ "SONAR SEARCH COMPLETED")) 

(defun sonar _search (xsearch ysearclz deptlz speed) 
(do ( (distance _to _goal (get _rhe _distance x y xsearch ysearcb J 

(get_tlze_disrance x y xsean:h ysearclzJ)) 
((> 2 disrance_to_goal) (princ "SUB AT SUBGOAL")) 
(send _float (get_ autocourse x y .\·search ysearclz)) 
(send _float deprh) 
(send_jloar speed) 
(send _float xsearch) 
(send _float ysearch) 
(send _string "sonar search") 
( ger _data _jrom_iris))) 
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(defun bottom_search _mission (xdest ydest search_speed) 
(tra11sit _to _pt xdest ydest 300 4) 
(dive_ro_borrom xdest ydest) 
(execute _borrom_search .xdest ydest search_speed) 
(transit hack 300 4) 
(come to PD xsrarr vsrart) 
(princ''BOTTOM SEARCH MISSION COMPLETED")) 

(defun dive_ro_bottom (xdesr ydest) 
(do ((depth ntrn• sub depth sub depth)) 

((<depth under sub I 50) (p7-inc "SUB NEAR BOTTOM")) 
(send _float ( get~autocourse x y xdesr ydest)) 
(send _float(- (+sub _depth depth_under _sub) I45)) 
(send _float 4) 
(send _float x) 
(send _float y) 
(send_srri11g "DIVE TO THE BOTTOM'') 
(get_ data _from _iris))) 

(defwz execute _bottom_searclz (."Cdest ydest searclz_speed) 
(bottom_searclz (-:west 30) (+ ydest 5) searclz_speed) 
(bottom search(+ xdest 30) (+ ydest IO) searclz speed) 
(bottom-search(- xdest 30) (+ ydest 15) searclz speed) 
(bottom=search (+ xdest 30) (+ ydest 20) search_speed)) 

(defun borrom_search (xsearch ysearch searclz_speed) 
(do ((dista11ce _to _goal (get _rite_ distance x y xsearch ysearch) 

(get _rlze _distance x y xsearch ysearch ))) 
((> 2 distance to goa/) (princ "SUB AT SUBGOAL")) 

(send _float (get ~autocourse x y xsearch ysearch)) 
(send _float(-(+ sub _depth depth_ wzder _sub) I 50)) 
( se11d _float search _speed) 
(send _float xsearch) 
(send _float ysearch) 
(send_string "BOTTOM SEARCH") 
(get _data_jrom_iris))) 

(defun deliver _payload_mission (xdest ydest rra11sit_depth tronsit_speed) 
(transit _to _pt xdesr ydesr transit_ depth transu _speed) 
(come to PDxdestvdest) 
(pri11c1 TRANSITCOMPLFTED- RECOVER PAYLOAD") 
(standby Jor _recovery xdest ydest)) 

;;; The following functions support drivi11g the AUV dy11amic model mziRIS5 i11 the 
; ;; "autopilot mode". T!Jey are based mz the "deliver _payload_missi01z" 011d "transit_to_pt" 
;;; functions and do not yet suppon collisio11 avoidance. They do handle path-planning 
;;; around obstacles. Any expressions that start with "kee:: ... " designate KEE package 
; ; ; funcn'ons that pass info from this, the USER's package to rlze KEE package for display on 
;;; the Mission Pla11ni11g and Control Panel. 

( defwz transit _pool (xi y I transit _depth tra11sit _speed) 
(starr-cmz ) 
(terpri ) 
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(prim: "C onnecrion with iris established.") 
(terpri) 
( serq xsrarr (get_ data)) 
( serq x xstart) 
(princ "x receivedfrom iris: ")(prim x) 
(terpri) 
( kee: :put. value 'kee::mission-plan 'kee: :x-start xstart) 
( kee: :put. value 'kee: :auv-operating-starus 'kee: :x-posirion xstart) 
( setq ystart (get _data)) 
( serq y ysrart) 
( pri1lc "y received from iris: ") (prim y) 
( rerpri) 
( kee: :put. value 'kee: :mission-plan 'kee: :y-starr ystart) 
( kee: :put. value 'kee: :auv-operating-status 'kee: :y-position ystart) 
(serq deprh_wuier _sub (get_data)) 
(princ "depth_wuier_sub received from iris: ")(prini depth_under _sub) 
(terpri) 
( kee: :pur. value 'kee: :mission-plan 'kee: :deprh-under-auv depth_ under _sub) 
(kee::pur.value 'kee::auv-opcrating-starus 'kee::deprll-under-auv depth under sub) 

The following lines of code send data to rhe color monitor for display of the 
AUV model's start position and rile goal position. 
The color monitor's coord system is opposite that of the iris. 
( x direction 011 iris = y direction on monitor) 

( serq .\i ystart) 
(setq yi xsrart) 
(setq xg yi) 
(setq yg xi) 
( draw-start-pos xi yi) 
(draw- goal-pos xg yg) 
(move-icon xi yi) 

(plan _yath x y xi yi transit_ depth) 
(setq rev_yarh (reverse patlz)) 
(terpri) 
(princ "Autopilot course calculated for first leg." )(terpri) 
(princ "Hit a key on lris5 main terminal ro continue. ")(rerpri) 
(send _float xi) 
( setui _float y i) 
(transit_ witlzout_contacts xi yi transit_deprh transit_speed 'TRANSIT") 
(transit_ back _witlzout _contacts transit _depth transit _speed) 
(rerpri) 
(princ 'TRANSIT COMPLETE.") 
(terpri) 
(stop _i11_pool xsrart ysrart)) 

; Tlze following functions support the AUV and SUB simulator functions in the 
; above code. These are subsidiary functions carried ow during a mission, or 
; fu11ctions rlzat assist the path planner with course and water depth calculations. 

(defzm transit_back(autodeprh aurospeed) 
( serq path rev _yath) 
( serq path (cdr path)) ;drop the first node ro prevem azn· limit cycling ... 
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(transit xsrarr xsrarr awodeprh aurospeed "TRANSIT BACK")) 

(defun record_ data _on _station (xdesr ydesr minutes) 
( serq end _rime ( + (* minutes 3600) ( ger-irzrernal-rea /-rime))) 
(do ((rime now (ger-imernal-real-rime) 

{ger-imema 1-re'al-rime))) 
((>rime now end rime) (princ "OK")) 
(send _float (get _a7aocourse x y xdesr ydesr)) 
(send _float 0) 
(send _float 2) 
(send _float x) 
(send _float y) 
(serq command "ELECTRONIC RECON- ANTENNA RAISED") 
(send _string command) 
( ge r _data Jrom _iris))) 

(de fun rake _yhoros _on _station ( xdesr ydesr mi11utes periscope_ bearing) 
(setq end_rime (+(*minutes 3600) (ger-inremal-rea/-rime))) 
(do ((rime rww ( ger-imemal-real-rime) 

(ger-imemal-real-rime))) 
((> rime_now end_rlme) (princ "OK")) 
(send _float (get _aurocourse x y xdesr ydesr )) 
(send _float 0) 
(send _float 2) 
(send _float x) 
(send _float y) 
(selld_srrlng "PHOTOGRAPHIC RECON- PERISCOPE TRAINED") 
(get_ data Jrom _iris))) 

(defun come_ro_PD (xdesr ydesr) 
(do ((depth now sub depth sub depth)) 

((<depth now 1) (princ "SUB at PD")) 
(send Jloor (get_ aurocourse x y xdesr ydesf)) :send aurocourse 
( serui _float 0) ;send aurodeprh 
(send _float 4) ;send aurospeed 
(send.Jloar x) 
(send _float y) 
(send_srring "COME TO PERISCOPE DEPTH") 
(get_ dar a Jrom _iris))) 

(defun srandbyJor _recovery (xdesr ydesr) 
(loop 

( serzd _float (get_ autocourse x y xdesr ydesr)) 
(send _flvar 0) :send aurodeprh 
(send _float 2) :send aurospeed 
( serzd _float ;west) 
(serzd_floar ydesf) 
(send string "STANDING BY FOR RECOVERY- ANTENNA RAISED") 
(get_ data Jrom _iris))) 

( defun get_ data Jrom_iris() 
(serq x (get_ data)) 
(setq y (get_dara)) 
(serq depth _under _sub (get _data)) 
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(serq sub_deprh (ger_dara)) 
(serq acourse (ger_dara)) 
(prim:" x y deprh_under_suh sub ' sdeprh course") 
(fornzar r "-% -o2F -152F -15.2f -15,2F -15.2F" x )' deprh_under _sub sub _depth acourse) 
(rerpri) 
( serq smzar_ conracrs 

( /isr 
(lisr (ger_dara) (ger_dara)) 
(/isr ( ger _dar a) ( ger _ dara)) 
(lisr (ger_dara) (ger_dara)) 
(lisr (ger_dara) (ger_dara)) 
(/isr (ger_dara) (ger_dara)) 
(lisr (ger_dara) (ger_dara)) 
( lisr ( ger _dar a) ( ger _ dara)) 
(lisr (ger_dara) (ger_dara)) 
(lisr (ger_dara) (ger_dara)))) 

(princ sonar _conracrs) 
(princ "Conracr ranges:")(rerpri) 

( ger _closest _range sonar_ conrac:rs) 
(ferpri)) 

( defun ger _dar a _from _iris_ wirhour _ comacrs() 
(serqx(ger dara)) 
( kee: :pur.v;;lue 'kee: :auv-operaring-srarus 'kee: :x-posirion x) 

(serq y (ger_dara)) 
( kee: :pur. value 'kee: :auv-operaring-srarus 'kee: :y-posirion y) 

The following few lines rransfer dar a ro rhe color monitor ro mark rheA UV' s 
track during mission execution. 
The color monitor coord system is opposite rhar of iris display; 
(x direction on iris = y direction on mvniror) 

(serq xi y) 
(serq yi x) 

(move-icon xi yi) 

(serq deprh under sub (ger dara )) 
( kee::pur. value 7.:ee::a'(;v-operaring-srarus 'kee ::deprh-wzder-auv deprh under sub ) 

(serq sub depth (ger dara)) - -
( kee : :pur. valu"'i 'kee: :auv-:operaring-srarus 'kee: :auv-deprh sub_ depth) 

(serq acourse (ger dara)) 
( kee: :pur. value 'kee: :auv-operaring-srarus 'kee : :heading acourse) 

(princ" x y deprh_under_auv auv 'sdeprh course") 
(formar r "-% -o,2F -10.2F -12.2f -12.2F -122F" x y deprh_ullder _sub sub_deprh acourse) 
(rerpri)) 

( serq closest_ comacr _range 3) 

( defun ger closest range ( conracrs) 
(do ((c:unracr Lisr c:onracrs 

(cdr conracr lisr)) 
( lisr _length (length comacrs) 

(1-lisr length))) 
( ( < /isr length 2)) 
(prim: (caar comacr_lisr)) 
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( rerpri))) 

( defun rranslr _ro _yr (xi yi aurodeprh aurvspecd) 
(starr-con) 
( rerprz) 
( princ "Connection with iris established.") 
(terpri) 
(setq xsrarr (ger_dara)) 
( setq x xstarr) 
(pritzc "x receil'edfrom iris:") (prim x) 
( rerprz) 
(serq ysrarr (get_ data)) 
(setq y ysrarr) 
(princ "_v received from iris: ")(print y) 
(rerpri) 
( serq deprh_under _sub (get_ data)) 
(princ "depth under sub received from ins: ") (prini depth under sub) 
(sendJloar xl) - - -
(send Jloar y i) 
(plan_yarlz x y xi yi aurodeprh) 
( serq rev_parlz (reverse path!) 
(ferpri) 
(princ "Auropilor course calculated for first leg. ")(rerpri) 
(princ "Hit <Enter> onlris2 side terminal ro cominue. ") 
(terpri) 
(transit xi yi aurodeprlz aurospeed "transit")) 

(defu n transit (xi yi aurodeprh aurospeed sub _command) 
(do ((disrance_ro_goa/ (ger_rhe_disrance x y xi yi) 

(ger_rlze_disrance x y xi yi ))) 
((> 2 distance ro goa/) (prznc "SUB AT GOAL")) 

(setq autocourse (get_aurocourse X y (Caadr patlz ) (cadadr path))) 
(sendJloar aurocourse) 
(COild 

(( > iOO deprlz_under _sub ) (send Jloar (- (+ depth _under_ sub sub _depr/z) iOO))) 
(t (sendJloar aurodeprh))) 

(send _float autospeed) 
(send _float (caadr path)) 
(send _float (cadadr parh)) 
(send_strlng sub_command) 

(rerpri) 
(get_ data Jrom_iris) 

(cond 
((> i (ger_rhe_disrance x y (caadr path) (cadadr parlz ))) 
(serq path (cdr pari!)) )))) 

(defun transit_wirhom_conracrs (xi yi aurodeprh aurospeed sub_comnzand) 
(do ((disrance_ro _goal (ger_rhe_disrance x y xi yi) 

(ger_rhe_disrance x y xi yi ))) 
((> 25 distance to goal) (terpri) (prznc "AUV AT GOAL") (rerpri)) 

(serq aurocourse-( get_ aurocourse x y (caadr parll) (cadadr pari!))) 
( smd Jloar aurocourse) 

(kee::pur. value · kee: :orders-ro-auv · kee: :aurocourse aurocourse) 
(cond 

((> 20 deprlz_zuzder_su/J) (sendJloar (- (+ deprh_wzder_sub sub_deprh ) 20))) 
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(t (send _float aurodepth))) 
( kee : :pur.value 'kee: :orders-to-aU\' 'kee : :awodepth aurodepth) 

(send _float aurospeed) 
(kee::put.value 'kee::orders-to-auv 'kee ::aurospeed autospeed) 
(kee::put.va/ue 'kee::auv-operating-starus 'kee::auv-rpm autospeed) 

(send_jloat(caadr path)) 
(kee::pur.value 'kee::mission-plan 'kee::x-subgoa/1 (caadr path)) 

(send _float ( cadadr path)) 
(kee::pm.value 'kee::mission-p/an 'kee::y-subgoall (cadadr path)) 
(kee::pur.value 'kee::mission-plan 'kee::x-subgoal2 (caadr (cdr patll))) 
( kee ::pur. value 'kee ::mission-plan 'kee: :y-subgoa12 ( cadadr ( cdrpatll))) 

(send_string sub_command) 
(terpri) 
(get _data _from_iris _without_ comacrs) 
(cond 
((> 25 (ger_tlze_distance x y (caadr path) (cadadr path))) 
(setq path (cdr patll) ))))) 

(defun n·ansir back without contacts (transit depth transit speed) 
(serq path re~•_path) - - -
(transit_ without_ cvmacts xsrart ysrart transir_depth transir_speed "TRANSIT BACK ")) 

(deftm stop _in_yool (xsrart ysrarr) 
(loop 

(send _float (get_ autocourse x y xsrarr ysrart)) 
(send _float 0) :put auv on surface. 
(send _float 0) :come to all stop. 
(send _float xsrart) 
(send _float ystart) 
( kee: :pur. value 'kee: :auv-operating-srarus 'kee: :auv-rpm 0) 
(send _string "STANDING BY FOR RECOVERY.") 
( ger_dara _jrom_iris_ wirhour_contacts))) 

(defun p/an_path (x y xi yl autodepth) 
(if 

(null (check_ water _deprh_along_rrack x y xi yl aurodepth )) 
(serq path (process_yarh (get_real_yarh {list x y) (list xi yl) (+ 100 aurodepth) 20 ) 

( + 100 aurodeprh))) 
(serq path (list (list x y) (list xi yl )))) 

(prinl path)) 

( defun get_ aurocourse (X y xi yl) 
(cond 

(( < x xi) (autocourse 1 x y xi y])) 
(t (- 360 (aurocoursel x y xi yl)))) ) 

(defun autocoursel (x y xi yl) 
(* 57.295 (acos (I (- yl y) 

(ger_rhe_disrance x y xi yl ))))) 

(de fun get _the_ distance (x y xi y I) 

( sqrt ( + (square (- x xi)) 
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(square(- y yi ))))) 

(defim check_water _depth_brwn_nodes (nin2 aurodepth) 
(clzeck_water _depth_along_track (car ni) (cadr ni) 

(car n2) (cadr 1l2) autodepth)) 

( defun check_ water_ depth_ along_ track (x y xi y i aurodepth) 
(setq ac (get_aurocourse x y xi yi )) 
( setq track _length (get _the_ distance x y xi y i)) 
( setq XX X) 

( setq yy y) 
(prog ((index track_lengtlz}) 

again 

(if 

(cond ((> 0 index) (return index))) 
(setq index (1- index)) 

(setq ;u (+ ;u (sin (I ac 57.295)))) 
(setq yy (+ yy (cos(/ ac 57.295)))) 
(prmi (get_ water _depth xx yy)) (princ " ") 
(prini ;a) (princ" ") (prini yy) (terpri) 

(if ( < aurodepth (get_ water _depth xx yy)) 
(go again) nil)) 

(> i (get_the_distance xx yy xi _vi)) 
(princ "--SUFFICIENT WATER DEPTH ALONG INTENDED TRACK-- "))) 

(defunprocessyath (path autodepth) 
(cond 

((and ( < 2 (length path)) 
(clzeck_water _depth_brwn_nodes (car patll) (cadr path) aurodepth)) 

(processyath (cons (car path) (cddr path)) aurvdepth)) 

((equal2 (length path)) path) 
(t (setq path (cons (car path) 

(processyath (cdr path) autodeptlz)))))) 
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;:; -*-Mode: LISP: Symax: Common-lisp ; Package: KEE: Base: 10 -*-

( i11-package 'kee) 

;; This is file initkb. This file initiali:es the display components 
;; of the AUV Mission Planning and Conrrol Panel. At rhe srarr of each 
;; mission selection process all display uuirs are set to zero. 

( deftm init-displays () 
; ;initiali:e goal-selection parameters 
(pzu .value 'goal-selection 'x-position 0) 
(pur . value ·goa 1-se lection 'y-posirion 0) 
(pur. value 'goal-selection 'transit-deprlz 0) 
(put. value 'goal-selection 'transit-speed 0) 
(pur. value 'goal-selection 'search-depth 0) 
(pur. value ·goal-selection 'search-speed 0) 
(pur. value ·goal-selection 'data-set 0) 

;;inin"ali:e mission-plan parameters 

(pur. value 'mission-plan 'x-starr 0) 
(pur.value 'mission-plan 'y-startO) 
(pur. value 'mission-plan 'deprh-under-auv 0) 
(pur. value 'mission-plan 'x-goal 0) 
(pur. value ·mission-plan 'y-goal 0) 
(pur. value 'mission-plan '.x-subgoall 0) 
(put.Pa!ue 'mission-plan 'y-subgoa/1 0) 
(pur. value 'mission-plan 'x-subgoa/2 0) 
(put.mlue 'm1ssion-plan 'y-subgoa/2 0) 

;;iniriali:e orders-to-aU\' parameters 

(put.value 'orders-to-auv 'awocourse 0) 
(pur. value · orders-ro-auv 'aurodepth 0) 
(pur. value 'orders-ro-auv 'aurospeed 0) 

; ;inin·ati:e auv-operating-status 

(pur. value 'auv-operaring-srarus 'x-posirion 0) 
(pur. value 'auv-operaring-sratus 'y-position 0) 
(put. value 'auv-operating-srarus 'deptlz-under-au v 0) 
(pur. value' auv-operatillg-status 'auv-depth 0) 
(pur. value 'auv-operaring-sratus 'auv-rpm 0) 
(pur. value 'auv-operating-sratus 'heading 0)) 

(defun serpack-user () 
:;sers rile user package 
(serf*package* <find-package "user"))) 

(defun serpack-kee () 
::sers tlze kee package 
(serf*package* (find-package "kee"))) 
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;;; -*-Mode: USP ; Synrax: Common-lisp ; Package: USER-*-

; ; This is file mmziror. Tliis file creates a color display sn·een on rile 
;; LISP macliiue exremal color monitor. The display screen contains a 
;; 2-D represenrario11 of rile resr pool enviroumenr for rhe AUV dy11amic 
;; model. During mission execution. AUV position dora is sew ro rhis 
; ; file from file ap3 aud rile AUV' s track is plorred using a colored icou. 

;;DEFINE VARIABLES 

( DEFV AR *display-window*) 
(DEFV AR *display-window-array*) 
(DEFV AR *display-window-width*) 
(DEFV AR *display-window-height*) 
(DEFV AR *display-window-position*) 
(DEFV AR *display-window-screen*) 
( DEFV AR *display-window-pas*) 

(DEFVAR *main-screen*) 
(DEFVAR *screen-alu*) 
(DEFVAR *srarr-alu*) 
(DEFVAR *goal-alu*) 
( D EFV AR *icon-a lu*) 
(DEFVAR *grid-alu*) 
(DEFVAR *lerrer-alu*) 
(DEFVAR *legend-box-alu*) 

(DEFVAR *x-sran*) 
(DEFVAR *y-srarr*) 
(DEFVAR scale) 
(DEFVAR xs) 
(DEFVAR ys) 
(DEFVAR xg) 
(DEFVAR ygJ 
(DEFVAR XI) 

(DEFVARyi) 

;;DEFINE WINDOW AND COLORS 

(DEFFLAVOR my-color-flaror() 
(rv:wi11dow 
rv :gmphics-mixin)) 

(DEFUN make-color-wiudow 
(window-11ame position inside-widrli inside-height 

&rest options &key (superior ( color:find-color-screen :creare-p r)) 
&allow-other-keys) 

(apply #'tv :make-window 'my-color-flavor 
:blinker-p nil 
:borders 2 
:save-birs r 
:expose-p r 
:label nil 
:11ame window-uame 
:posuwu position 
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:inside-width inside-width 
:inside-height inside-height 
:superior superior 
options)) 

(DEFUN make-display-window () 
(SETF *display-window* 

(make-color-window "Display-Window" 
'(50 50) 1150 850)) 

(SETF *screen-alu* (SEND color:color-screen 
:compute-color-a lu 
rv:alu-seta 0.3807 0.5125 1.0)) 

(SEND *display-wi11dow* :set-erase-aluf * screen-alu*) 
(SEND *display-window* :refresh)) 

(DEFUN init-display () 
(clear-scene) 
(draw-bo.\) 
'mon iror-display-is-ready) 

(DEFUN create-display-window() 
(SETF *main-screen* (SEND *terminal-io* :superior)) 
(make-display-window) 
(SETF *display-wind0'1·1·-pos* 

(SEND *display-window* :position)) 
( SETF *display-window-screen* 

(SEND *display-window* :screen)) 
(init-colors) 
'doue-init-display-window) 

(DEFUN clear-scene () 
(tv:sheet-force-access (*display-window*) 

(SEND *display-wi11dow* :refreslz))) 

(DE FUN kill() 
(SEND *display-window* :kill) 
'display-window-killed) 

(DEFUN init-colors () 
( SETF * start-alu* (SEND *display-window-screen* 

:compute-color-alu color:alu-x 0.406 0.9535 0.2207)) 

(SETF *goal-alu* (SEND *display-window-screen* 
:compute-color-alu color:alu-x 1.0 0.009008 0.8421 )) 

( SETF * icon-alu* (SEND *display-window-screen* 
:cvmpure-colvr-alu colvr:alu-x 1.0 0.0 0.2862)) 

(SETF *grid-alu* (SEND *display-window-screen* 
:compure-color-alu color:alu-x 0.9054 1.0 0.4847)) 

(SETF *letter-alu* (SEND *display-window-screen* 
:compure-color-alu color:alu-x 0 0 0 )) 

(SETF *legend-box-alu* (SEND *display-window-screen* 
:compure-color-alu color:alu-.\· 0.745 0.7243 0.7976))) 
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(DEFUN draw-box () 
(SEND *display-window* 

:draw-rectangle 1000 500100100. *grid-a/11*) 
::draw vertical lines 
(SEND *display-window* 

:draw-line 225. 100. 225. 600. *icon-alu*) 
(SEND *display-windo'l-1-'* 

:draw-line 350. 100. 350. 600. *icon-a/11*) 
(SEND *display-window* 

:draw-line 475. 100. 475. 600. *icon-a/u*) 
(SEND *display-window* 

:draw-line oUO. 100. 600. 600. *icon-a/11* J 
(SEND *display-window* 

:draw-line 725. 100. 725. 600. *icon-alu*) 
(SEND *display-window* 

:draw-line 850. 100. 850. 600. *icon-alu* ) 
(SEND *display-window* 

:draw-line 975. 100. 975. 600. *icon-a/u*) 
;;draw lwri:omallines 
(SEND *display-window* 

:draw-line 100. 225. 1100. 225. *icon-a/u* ) 
(SEND *display-window* 

:draw-line 100. 350. 1100. 350. *icon-ahz*) 
(SEND *display-window* 

:draw-line 100. 475. 1100. 475. *icon-alu* )) 

:(DEFUN draw-legend-box() 
(SEND "'display-window* 

:draw-rectangle 400 100 400 650 *legend-box-alu*) 
(SEND *display-wzndow* :draw-ftlled-in-Clrcle 550 700 20 * start-alu*) 
(SEND *display-wmdow* :draw-filled-in-czrc/e 650 700 20 *goal-a/u*) 
(LET ((SX 540) 

(sy 710) 
(gx 640) 
(gy 710)) 

(SEND *display-window* :draw-string "S" 
sx sy ( + 1 sx) sy t '(:fix :italic :large) 
* /etrer-a/u*) 

(SEND *display-window* :draw-string "G" 
gx gy ( + 1 gx) gy t ' (:fix :italic :large) 
*letrer-alu* ))) 

(DEFUN draw-icon (X y) 
(SEND *display-window* :draw-filled-in-circle .x )' 10 *icon-alu* )) 

(D EFUN draw-starr-pas (x y) 
(SETF scale 0.694) 
(SETF xs ( + (* x scale) 10{) )) 
(SETF ys ( + (* _v scale) 100)) 
(SEND *display-window* :draw-fil/cd-in-circlc xs ys 20 *srarr-alu* )) 
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(DEFUN draw-goal-pos (X y) 

(SETF scale 0.694) 
(SETF xg (+ (* x scale) 100)) 
(SETF yg (+ (* y scale) 100)) 
(SEND *display-window* :draw-filled-in-circle xg yg 20 * goal-alu*)) 

(DEFUN m01'e-ico11 (X y) 

(serf scale 0.694) 
( setfxi ( + (* x scale) 100}) 
(serfyi (+ (* yscale) 100)) 
(draw-icon xi yi)) 

;;:mai11 body 
; ; ;prepare mo11itor 

( creare-display-wi11dow) 
( init-display) 

93 



;;; -*- Modt'. LISP; Package: USER: Base: 10; Symax: Common-lisp-*-

; This is the file best. This lisp code accepts starr/goal positions 
; from apJ.Iisp and uses a best-first search algorirlzm to calculate 
; the appropriate path from starr ro goal. 

( defim get _real _yarh (starr finish aurodeprh grain) 
(append 

(remm·e_lasr (cons starr (cdr (best starr finish aurodeprh grain)))) 
(list finis/1))) 

(defun remm·e_lasr (L) 
(COI!d 

((= 1 (length LJ) ni/) 
(r (cons (carL) (remove_lasr (cdr L)))))) 

(deftm best (starr finish aurodeprlz grain) 
(serq starr (list (nearest 20 (car start)) (nearest 20 (cadr starr)))) 
( serq finish (list (nearest 20 (car finish)) (neare-sr 20 (cadrfinish)))) 
(serq aurodeprh (round i-;um aurodepth)) -
(hesrl (list (hsr srarr))ftnish aurodeprh grain)) 

(defun besrl (queue finish aurodeprll graiu) 
(<:mui ((null queue) nil) 

({equal finish (caar queue)) 
(reverse (car queue))) 

(t (best] (sort (append (expand_node (car queue) aurodepth grain) 
(cdr queue)) 

#'(lambda (X y) (c/oserp x yfinish))) 
finish autodeprlz grain)))) 

( deftm expand _rwde (path aurvdeprh grain) 
(remove-if 
#'(lambda (path) (member (car path) (cdr path))) 
(mapcar #'(lambda (chi/d) (cons child path)) 

(successor (car path) aurodepth grain)))) 

(defun successor (position aurodepth grain) 
( serq /nil) 
(cond 

((< autodeprh (get water depth (car position)(+ (cadr position) grain))) 
(setq I (cons (list (car position)(+ (cadr position) grain)) /)))) 

(cond 
(( < CJurodepth (get_ water_ depth (car position) (- ( cadr position) grain))) 
( setq I (cons (list (car position) (- ( cadr position) grain)) /)))) 

(cond 
(( < autodepth (get_ water _depth ( + ( rnr ro.<:itim" grain J (- ( cadr position) grain))) 
( setq I (cons (list ( + (car position J gra111 J (- ( cadr position) grain)) I)) ) ) 
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(COfld 

(( < autodeprh (get _water_ depth ( + (car positiou) grain) ( cadr position))) 
( setq I (cons (list ( + (car position) grain) ( cadr position)) I)))) 

(com/ 
( ( < aurodeptll (get _water_ depth ( + (car position) grain) ( + ( cadr position) grain))) 
(setq I (cons (list(+ (car position) grain)(+ (cadr position) grain))/)))) 

(cond 
((< autodepth (get_water _depth(- (car position) grain)(- (cadr positio11) grain))) 
(setq I (cons (list(- (car position) grain)(- (cadr position) grain))/)))) 

(cond 
(( < aurodeptfl (get_ water_ depth(- (car position) grain) (cadr position))) 
(setq I (cons (list(- (car position) grain) (cadr position))/)))) 

(cond 
(( < aurodepth (get_ water_ depth (- (car position) grain) ( + ( cadr position) grain))) 
(setq I (cons (list(- (car position) grain)(+ (cadr position) grain))/))))) 

(defwz closerp (a b with respect to) 
(< (get_node_distance(car a) with_respect_to) 

(get_node_distance (car b) with_respect_ro))) 

(deftm get node distance (nl n2) 
(sqrt (+(square(- (car nl) (car n2))) 

(square(- (cadr nl) (cadr n2))J))) 

(defim get_water _depth (x y) 
( cond 

((> 10 (distance x y 205 205)) 0) 
((> 2V (distance x y 205 205 )) 50) 
((> 30 (distance x y 205 205)) 0) 
((> 30 (distance x y 200 1202)) 0) 
((> 30 (distance x y 350 652)) 0) 
((> 30 (distance x y 380 902)) 0) 
((> 30 (distance x y 535 227)) 0) 
((> 30 (distance x y 560 1052)) 0) 

;Sub simulator island 
;Sub simulator shoals. 

;Six AUV simulator mines follow. 

(t (* 0.5 (square (distance x y 205 205)))))) ;This is at least tile pool depth. 

(defun distance (x y xl yl) 
(sqrr (+(square(- x xl )) 

(square(- y yl ))))) 

(defun square (x) (* x x)) 

(defim round num (number) 
(car (list (rowzd number)))) 

(defun nearest_20 (number) 
(* 20 (rozmd_num (I number 20.0)))) 
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:;: -*-Mode: LISP: Symax: Common-lisp; Package: USER-*-

This is file sym-iris-comm1. This file facilitates the imerprocess 
commumcations between LISP machines and IRiS graphics workstations. 
This is an upgrade from fi.le sym-iris-comm. 

'Talk" is an object ro send and to receive data across a network. 

usage: (send talk :init-destination-lzost 'iris2) ; get remote host object 
(send talk :start-iris) ; make connection 
(send talk :pur-iris data) ; send data 
(send talk :get-iris) ; get data from remote host 
(send talk :stop-iris) ; close conu11unication 
(send talk :reuse-iris) ; open closed communication 
(send talk :change-iris-ports) ; swirclz from iris2 full-duplex 

; comms to iris5 semi-duplex 

(defvar talk) 

: library functions to be used by flavor conversation-with-iris. 

( defim convert-number-to-string ( n) 
(prillc-to-srring n)) 

( defim convert-string-to-integer ( str &optional (radix 10)) 
(do((j0(+j1)) 

(n 0 (+ (* n radix) (digir-char-p (char sn· j) radix)))) 
((= j (length str)) n))) 

(de fun find-period-index ( srr) 
(do ((X 0 (+X 1 ))) 

((equal (char sn· xJ (char"." 0)) 
X))) 

(defun get-lefrside-of-real (str &optional (radix 10)) 
(do ((jO(i+j)) 

(11 0 (+ (* n radix) (digit-char-p (char str j) radix)))) 
((or (null (digit-char-p (char str j) radix))(= j (length str))) 11))) 

(defun ger-rigluside-of-real (str &optional (radix 10)) 
(do ((inde.\ (1 +(find-period-index str)) (1 +index )) 

(factor 0.10 (*factor 0.10)) 
(11 0.0 (+ n (*factor (digit-char-p (char srr index) radix))))) 

((=index (length str)) n ))) 
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(defun convert-string-to-real (str &optional (radix 10)) 
(+ (j7vat (get-leftside-vfreal str radix)) (get-rightside-of-rea/ str radix))) 

(defun num-string4 (num) 
; num shvuld be less then and equal to 4 digits. 
(let* ((num-string (princ-to-string num)) 

(num-ofleading-zeros (- 4 (lerzgtlz num-string))) 
(leading-zeros 

(make-string num-of/eading-zeros 
:initial-element (char "0" 0)))) 

(concatenate 'string leading-zeros num-string))) 

; port number definitions: Iris2 uses full duplex comms so ports are set up for 
this default. fris5 uses semiduplex comms (the same port for send and 
receive) and will have both ports set to *remote-portl* 

(defvar *remote-port]* 1027) 
(defvar *remote-port2* 1026) 
(defvar *local-talk-port* 1500) 
(defvar */veal-listen-port* 1501) 

; this is the remote send port 
; this is the remote receive port 
; this is the local send port 
; this is the local receive port 

conversation-with-iris flavor definition 

This definition is not restricted to iris, but it can be 
used with any host as long as the remote host does not 
already use ports 1027 or 1026 for its own purposes. 

(defflavor conversation-with-iris ((talking-port-number *remote-portl*) 

() 

(listening-port-number *renzote-porr2*) 
(local-talk-port-number * local-talk-porf" ) 
(local-listen-port-number * local-listen-porf" ) 

( ta /king-stream) 
(listening-stream) 

(destination-host-object) 

:initable-instance-variables) 

( defmethod ( :init-destination-host conversation-with-iris) 
(name-of-host) 
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(serf destination-host-ObJect ( net:parse-host name-of-lzost))) 

( defmetlzod (:change-iris-ports conversation-with-iris) 
() 

(serftalkmg-port-number *remore-portl*) ;sers ins5 semi-duplex comm ports. 
(serf listening-porr-llumber *remote-port 1 *)) 

(defmetlzod (:starr-iris conversation-w;th-iris) 
() 

(serf talking-stream 
( tcp: open-tcp-strea m destination-host-object 

talking-port-number 
local-talk-port-number)) 

(serf listening-stream 
(tc:p:open-tcp-stream destination-host-object 

listening-port-number 
loca 1-listen-porr-mmzber)) 

(terpn) 
(pr;nc "A com·ersarion with rhe iris machine has been initiated.") 
(rerpri)) 

( defmethod ( :reuse-iris conversation-with-iris) 
( ) 

(send self :starr-iris)) 

( defun read-strillg (stream num-chars) 
(let ((out-string"")) 

(dotimes (i num-chars) 
(serf out-string (string-append out-string (read-char stream )))) 

out-string)) 

( defmetlrod ( :ger-;ris conversation-with-iris ) 
() 

(let* ((typebuffer " ") 
( lengrhbuffer " ") 

(buffer "") 
(buffer-/engtlr 1 )) 

(serf rypebuffer 
(read-string listening-stream 1 )) 

(serf lengtlzbuffer 
(read-string listening-stream 4 )) 

(serf buffer-length 
(convert-string-to-integer lengthbnffer)) 

(serf buffer 
(read-string listenillg-stream buffer-length)) 

( cond ((eq ual rypebuffer "/") (convert-string-to-integer buffer)) 
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((equal type buffer "R") (convert-string-to-rea/ buffer)) 
((equal rypebuffer "C") buffer) 
(t nil)))) 

(de jim my-write-string(string stream) 
(let* ((nunz-clzars (length smng))) 

(dotimes (i num-clzars) 
(write-char (aref string i) stream)))) 

( defmethod (:put-iris conversation-with-iris) 
(object) 

(fer* ((buffer (cond 
((equal (type-of object) 'bignum) (convert-number-to-string object)) 

( (equal (type-of object) 'fixnum) ( convert-number-rv-sm·ng object)) 
( (equal (type-of object) 'single-float) (convert-number-tv-string object)) 
((equal (type-of object) 'string) object) 
(t "error"))) 

(buffer-length (length buffer)) 

(typebuffer ( cond ((equal (type-of object) 'bignum) "!") 
((equal (type-of object) 'fixnum) "!") 
((equal (type-of object) 'single-float) "R") 
((equal (rype-of object) 'string) "C") 
(t "C"))) 

(I engthbuffer (convert-number-to-string buffer-length))) 

(my-wrire-sn·ing typebuffer talking-sn·eam) 
(send ta/J...-ing-stream force-output) 

(zj(= (length lengthbuffer) 4) 
(write-string lengrhbuffer talking-sn·eanz) 
(write-sn·ing (num-string4 lengtlzbuffer) talking-stream)) 

(send talking-stream force-output) 

(my-write-string buffer talking-stream) 
(send talking-stream force-output) 

)) 
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( defmetlwd (:stop-iris conversation-with-iris) 
() 

(send listening-stream :close) 
(send talking-stream :close) 
(terpri) 
(princ "A conversation with the iris machine has been closed.") 
(terpri)) 

(serf talk (make-instance ·conversation-with-iris)) 

(deftm choose-iris (*host-name*) 
(cond 

((equal *hose-name* 'iris2) 
( setq *host-name* 'iris2) 
(send talk :init-destination-host *host-name*) :use iris2 as default output. 
(terpri) 
(princ "/ris2 communications selected.") 
(terpri)) 

((equal *host-name* 'iris5) 
( setq *host-name* 'iris5) 
(send talk :init-destination-host *host-name*) 
(terpn) 
(princ "Jris5 conununications selected.") 
(terpn)))) 

(defun test-iris2() 
(equal *host-name* 'iris2)) 

(defun test-iris5() 
(equal *lzost-name* 'iris5 )) 

( defun start-con() 
(send talk :start-iris)) 

(defun get data() 
(send talk :get-iris)) 

( deftm send Jloat( single-float) 
(send talk :put-iris single-float)) 

(defun send _string( string) 
(send talk :put-iris string)) 

( defwz end-con() 
(send talk :stop-iris)) 

(defwz restart() 
(send talk :reuse-iris)) 

:use these two functions to test 
:which iris machine is the output. 

;an example of this is the get_water _ 
;depthfunction in best.lisp. 
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